Numerical simulations of magnetic resonance elastography using finite element analysis with a linear heterogeneous viscoelastic model

被引:4
|
作者
Tomita, Sunao [1 ]
Suzuki, Hayato [1 ]
Kajiwara, Itsuro [1 ]
Nakamura, Gen [2 ]
Jiang, Yu [3 ]
Suga, Mikio [4 ]
Obata, Takayuki [5 ]
Tadano, Shigeru [1 ]
机构
[1] Hokkaido Univ, Grad Sch Engn, Div Human Mech Syst & Design, Kita Ku, Kita 13,Nishi 8, Sapporo, Hokkaido 0608628, Japan
[2] Hokkaido Univ, Dept Math, Fac Sci, Kita Ku, Kita 10,Nishi 8, Sapporo, Hokkaido 0600810, Japan
[3] Shanghai Univ Finance & Econ, Dept Appl Math, 777 GuoDing Rd, Shanghai 200433, Peoples R China
[4] Chiba Univ, Ctr Frontier Med Engn, Inage Ku, 1-33 Yayoicho, Chiba, Chiba 2638522, Japan
[5] Natl Inst Radiol Sci, Inage Ku, 4-9-1 Anagawa, Chiba, Chiba 2638555, Japan
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
Magnetic resonance elastography; Elastogram; Viscoelasticity; Finite element analysis; Liver; MULTIFREQUENCY MR ELASTOGRAPHY; SHEAR-WAVE PROPAGATION; ACOUSTIC STRAIN WAVES; IN-VIVO; NONINVASIVE ASSESSMENT; BREAST-LESIONS; BRAIN; RECONSTRUCTION; MOLLIFICATION; ALGORITHM;
D O I
10.1007/s12650-017-0436-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Magnetic resonance elastography (MRE) is a technique to identify the viscoelastic moduli of biological tissues by solving the inverse problem from the displacement field of viscoelastic wave propagation in a tissue measured by MRI. Because finite element analysis (FEA) of MRE evaluates not only the viscoelastic model for a tissue but also the efficiency of the inversion algorithm, we developed FEA for MRE using commercial software called ANSYS, the Zener model for displacement field of a wave inside tissue, and an inversion algorithm called the modified integral method. The profile of the simulated displacement field by FEA agrees well with the experimental data measured by MRE for gel phantoms. Similarly, the value of storage modulus (i.e., stiffness) recovered using the modified integral method with the simulation data is consistent with the value given in FEA. Furthermore, applying the suggested FEA to a human liver demonstrates the effectiveness of the present simulation scheme.
引用
收藏
页码:133 / 145
页数:13
相关论文
共 50 条
  • [21] Finite element analysis of low temperature thermal nanoimprint lithography using a viscoelastic model
    Kim, Nam Woong
    Kim, Kug Weon
    Sin, Hyo-Chol
    MICROELECTRONIC ENGINEERING, 2008, 85 (09) : 1858 - 1865
  • [22] Identification process based on shear wave propagation within a phantom using finite element modelling and magnetic resonance elastography
    Leclerc, Gwladys E.
    Charleux, Fabrice
    Tho, Marie-Christine Ho Ba
    Bensamoun, Sabine F.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2015, 18 (05) : 485 - 491
  • [23] A condensation technique for finite element dynamic analysis using fractional derivative viscoelastic models
    Catania, Giuseppe
    Sorrentino, Silvio
    Fasana, Alessandro
    JOURNAL OF VIBRATION AND CONTROL, 2008, 14 (9-10) : 1573 - 1586
  • [24] A prediction model for the grade of liver fibrosis using magnetic resonance elastography
    Yusuke Mitsuka
    Yutaka Midorikawa
    Hayato Abe
    Naoki Matsumoto
    Mitsuhiko Moriyama
    Hiroki Haradome
    Masahiko Sugitani
    Shingo Tsuji
    Tadatoshi Takayama
    BMC Gastroenterology, 17
  • [25] A prediction model for the grade of liver fibrosis using magnetic resonance elastography
    Mitsuka, Yusuke
    Midorikawa, Yutaka
    Abe, Hayato
    Matsumoto, Naoki
    Moriyama, Mitsuhiko
    Haradome, Hiroki
    Sugitani, Masahiko
    Tsuji, Shingo
    Takayama, Tadatoshi
    BMC GASTROENTEROLOGY, 2017, 17
  • [26] Dynamic Viscoelastic Analysis of Asphalt Pavements using a Finite Element Formulation
    de Araujo Junior, Pedro Custodio
    Soares, Jorge Barbosa
    de Holanda, Aurea Silva
    Parente Junior, Evandro
    Evangelista Junior, Francisco
    ROAD MATERIALS AND PAVEMENT DESIGN, 2010, 11 (02) : 409 - 433
  • [27] Finite element analysis of dynamic behavior of viscoelastic materials using FFT
    Sogabe, Y
    Nakano, M
    Kishida, K
    Tsuzuki, M
    JSME INTERNATIONAL JOURNAL SERIES A-MECHANICS AND MATERIAL ENGINEERING, 1996, 39 (01): : 71 - 77
  • [28] Parameter Identification of Nonlinear Viscoelastic Material Model Using Finite Element-Based Inverse Analysis
    Hamim, Salah U.
    Singh, Raman P.
    RESIDUAL STRESS, THERMOMECHANICS & INFRARED IMAGING, HYBRID TECHNIQUES AND INVERSE PROBLEMS, VOL 9, 2017, : 141 - 150
  • [29] Finite element analysis of viscoelastic composite structures based on a micromechanical material model
    Kurnatowski, B.
    Matzenmiller, A.
    COMPUTATIONAL MATERIALS SCIENCE, 2008, 43 (04) : 957 - 973
  • [30] A micromechanical finite element model for linear and damage-coupled viscoelastic behaviour of asphalt mixture
    Dai, Qingli
    Sadd, Martin H.
    You, Zhanping
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2006, 30 (11) : 1135 - 1158