Binder-free TiO2 nanowires-C/Si/C 3D network composite as high performance anode for lithium ion battery

被引:9
作者
Liao, Wenjuan [1 ]
Chen, Dingqiong [1 ]
Zhang, Yiyong [1 ]
Zhao, Jinbao [1 ]
机构
[1] Xiamen Univ, State Prov Joint Engn Lab Power Source Technol Ne, State Key Lab Phys Chem Solid Surfaces, Collaborat Innovat Ctr Chem Energy Mat,Coll Chem, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Silicon; Binder-free anode; Chemical vapor deposition; Nanocomposite; ENHANCED ELECTROCHEMICAL PERFORMANCE;
D O I
10.1016/j.matlet.2017.08.084
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Silicon has been considered as the most promising anode candidate of new generation high-performance LIBs, but the huge volume strain during cycling processes limited its practical applications. Herein, the binder free TiO2-nanowires (NWs)-C/Si/C 3D network composite has been prepared by chemical vapor deposition (CVD) and facile carbonization process as a great solution to the problem. In this composite, the intertwined TiO2-NWs serves as a buffer matrix to alleviate the volume strain of silicon during cycling processes, while the dual protective carbon layers enhance the conductivity of TiO2-NWs and prevent Si from peeling off the substrate. The as-prepared TiO2-NWs-C/Si/C anode shows great cycling performance with a reversible capacity of 1570 mAh g(-1) at 2 A g(-1) and excellent capacity retention of 85.7% up to 100 cycles. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:547 / 550
页数:4
相关论文
共 11 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[3]   Polyvinyl alcohol gelation: A structural locking-up agent and carbon source for Si/CNT/C composites as high energy lithium ion battery anode [J].
Chen, Dingqiong ;
Liao, Wenjuan ;
Yang, Yang ;
Zhao, Jinbao .
JOURNAL OF POWER SOURCES, 2016, 315 :236-241
[4]   Three-dimensional hierarchically structured aerogels constructed with layered MoS2/graphene nanosheets as free-standing anodes for high-performance lithium ion batteries [J].
He, Jiarui ;
Li, Pingjian ;
Lv, Weiqiang ;
Wen, Kechun ;
Chen, Yuanfu ;
Zhang, Wanli ;
Li, Yanrong ;
Qin, Wu ;
He, Weidong .
ELECTROCHIMICA ACTA, 2016, 215 :12-18
[5]   Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries [J].
Hu, Yong-Sheng ;
Demir-Cakan, Rezan ;
Titirici, Maria-Magdalena ;
Mueller, Jens-Oliver ;
Schloegl, Robert ;
Antonietti, Markus ;
Maier, Joachim .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (09) :1645-1649
[6]   Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology [J].
Kim, Young-Lae ;
Sun, Yang-Kook ;
Lee, Sung-Man .
ELECTROCHIMICA ACTA, 2008, 53 (13) :4500-4504
[7]   Self-sacrificed synthesis of carbon-coated SiOx nanowires for high capacity lithium ion battery anodes [J].
Li, Zhaohuai ;
He, Qiu ;
He, Liang ;
Hu, Ping ;
Li, Wei ;
Yan, Haowu ;
Peng, Xianzhou ;
Huang, Congyun ;
Mai, Liqiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (08) :4183-4189
[8]   Application of a novel 3D nano-network structure for Ag-modified TiO2 film electrode with enhanced electrochemical performance [J].
Lin, Huangchang ;
Li, Xue ;
He, Xinyi ;
Zhao, Jinbao .
ELECTROCHIMICA ACTA, 2015, 173 :242-251
[9]   One-dimensional/two-dimensional hybridization for self-supported binder-free silicon-based lithium ion battery anodes [J].
Wang, Bin ;
Li, Xianglong ;
Luo, Bin ;
Jia, Yuying ;
Zhi, Linjie .
NANOSCALE, 2013, 5 (04) :1470-1474
[10]   Graphene/Carbon-Coated Si Nanoparticle Hybrids as High-Performance Anode Materials for Li-Ion Batteries [J].
Zhou, Min ;
Cai, Tingwei ;
Pu, Fan ;
Chen, Hao ;
Wang, Zhao ;
Zhang, Haiyong ;
Guan, Shiyou .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (08) :3449-3455