f-Structures on the classical flag manifold which admit (1,2)-symplectic metrics

被引:5
作者
Cohen, N
Negreiros, CJC
Paredes, M
Pinzón, S
San Martin, LAB
机构
[1] UNICAMP, IMECC, Dept Appl Math, BR-13083970 Campinas, SP, Brazil
[2] Univ Ind Santander, Escuela Matemat, Bucaramanga, Colombia
关键词
flag manifolds; (1,2)-symplectic structures; directed graphs;
D O I
10.2748/tmj/1119888339
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the invariant f-structures F on the classical maximal flag manifold F(n) which admit (1,2)-symplectic metrics. This provides a sufficient condition for the existence of F-harmonic maps from any cosymplectic Riemannian manifold onto F(n). In the special case of almost complex structures, our analysis extends and unifies two previous approaches: a paper of Brouwer in 1980 on locally transitive digraphs, involving unpublished work by Cameron; and work by Mo, Paredes, Negreiros, Cohen and San Martin on cone-free digraphs. We also discuss the construction of (1,2)-symplectic metrics and calculate their dimension. Our approach is graph theoretic.
引用
收藏
页码:261 / 271
页数:11
相关论文
共 24 条
  • [1] Black M, 1991, PITMAN RES NOTES MAT, V255
  • [2] BOLTON J, 1995, J REINE ANGEW MATH, V459, P119
  • [3] BROUWER AE, 1980, AFDELING ZUIVERE WIS, P138
  • [4] TOURNAMENTS, FLAGS, AND HARMONIC MAPS
    BURSTALL, FE
    SALAMON, SM
    [J]. MATHEMATISCHE ANNALEN, 1987, 277 (02) : 249 - 265
  • [5] HARMONIC TORI IN SYMMETRICAL SPACES AND COMMUTING HAMILTONIAN-SYSTEMS ON LOOP ALGEBRAS
    BURSTALL, FE
    FERUS, D
    PEDIT, F
    PINKALL, U
    [J]. ANNALS OF MATHEMATICS, 1993, 138 (01) : 173 - 212
  • [6] A rank-three condition for invariant (1,2)-symplectic almost Hermitian structures on flag manifolds
    Cohen, N
    Negreiros, CJC
    San Martin, LAB
    [J]. BULLETIN BRAZILIAN MATHEMATICAL SOCIETY, 2002, 33 (01): : 49 - 73
  • [7] (1,2)-symplectic metrics, flag manifolds and tournaments
    Cohen, N
    Negreiros, CJC
    San Martin, LAB
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2002, 34 : 641 - 649
  • [8] COHEN N, 2001, CONT MATH, V288, P300
  • [9] GRAY A, 1965, MICH MATH J, V12, P273
  • [10] HELGASON S, 1978, PURE APL MATH, V80