Cases where the linear canonical transform of a signal has compact support or is band-limited

被引:43
作者
Healy, John J. [1 ]
Sheridan, John T. [1 ]
机构
[1] Univ Coll Dublin, Sch Elect Elect & Mech Engn, Dublin 2, Ireland
关键词
D O I
10.1364/OL.33.000228
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A signal may have compact support, be band-limited (i.e., its Fourier transform has compact support), or neither ("unbounded"). We determine conditions for the linear canonical transform of a signal having these properties. We examine the significance of these conditions for special cases of the linear canonical transform and consider the physical significance of our results. (C) 2008 Optical Society of America.
引用
收藏
页码:228 / 230
页数:3
相关论文
共 10 条
[1]  
BAHER H, 1990, ANALOG DIGITAL SIGNA, P121
[2]   Optimal filtering with linear canonical transformations [J].
Barshan, B ;
Kutay, MA ;
Ozaktas, HM .
OPTICS COMMUNICATIONS, 1997, 135 (1-3) :32-36
[3]   Phase reconstruction from intensity measurements in one-parameter canonical-transform systems [J].
Bastiaans, MJ ;
Wolf, KB .
SEVENTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOL 1, PROCEEDINGS, 2003, :589-592
[4]   Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms [J].
Hennelly, BM ;
Sheridan, JT .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2005, 22 (05) :917-927
[5]   Analytical and numerical analysis of linear optical systems [J].
Kelly, Damien P. ;
Hennelly, Bryan M. ;
Rhodes, William T. ;
Sheridan, John T. .
OPTICAL ENGINEERING, 2006, 45 (08)
[6]  
PALEY REA, 1934, FOURIER TRANSFORMS C, P12
[7]  
PAPOULIS A, 1962, FOURIER INTEGRAL ITS, P215
[8]   Simplified fractional Fourier transforms [J].
Pei, SC ;
Ding, JJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (12) :2355-2367
[9]   Signal separation using linear canonical and fractional Fourier transforms [J].
Sharma, Kamalesh Kumar ;
Joshi, Shiv Dutt .
OPTICS COMMUNICATIONS, 2006, 265 (02) :454-460
[10]   Sampling of linear canonical transformed signals [J].
Stern, A .
SIGNAL PROCESSING, 2006, 86 (07) :1421-1425