Dynamics of run-and-tumble particles in dense single-file systems

被引:13
作者
Bertrand, Thibault [1 ]
Ilien, Pierre [2 ]
Benichou, Olivier [3 ]
Voiturie, Raphael [1 ,3 ]
机构
[1] Sorbonne Univ, CNRS, Lab Jean Perrin, UMR 8237, F-75005 Paris, France
[2] PSL Res Univ, ESPCI Paris, CNRS, EC2M,UMR7083 Gulliver, F-75005 Paris, France
[3] Sorbonne Univ, CNRS, Lab Phys Theor Matiere Condensee, UMR 7600, F-75005 Paris, France
来源
NEW JOURNAL OF PHYSICS | 2018年 / 20卷
关键词
active matter; run-and-tumble motion; lattice models in statistical physics; TRACER PARTICLE; DIFFUSION; COLLOIDS; LATTICE; MOTION; PRINCIPLES;
D O I
10.1088/1367-2630/aaef6f
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a minimal model of self-propelled particle in a crowded single-file environment. We extend classical models of exclusion processes (previously analyzed for diffusive and driven tracer particles) to the case where the tracer particle is a run-and-tumble particle (RTP), while all bath particles perform symmetric random walks. In the limit of high density of bath particles, we derive exact expressions for the full distribution P-n(X) of the RTP position X and all its cumulants, valid for arbitrary values of the tumbling probability alpha and time n. Our results highlight striking effects of crowding on the dynamics: even cumulants of the RTP position are increasing functions of alpha at intermediate timescales, and display a subdiffusive anomalous scaling proportional to root n independent of alpha in the limit of long times n -> infinity. These analytical results set the ground for a quantitative analysis of experimental trajectories of real biological or artificial microswimmers in extreme confinement.
引用
收藏
页数:17
相关论文
共 61 条
  • [1] Abramowitz M, 1972, Handbook of mathematical functions with formulas, graphs, and mathematical tables
  • [2] DIFFUSION OF LABELED PARTICLES ON ONE-DIMENSIONAL CHAINS
    ALEXANDER, S
    PINCUS, P
    [J]. PHYSICAL REVIEW B, 1978, 18 (04): : 2011 - 2012
  • [3] THE MOTION OF A TAGGED PARTICLE IN THE SIMPLE SYMMETRIC EXCLUSION SYSTEM ON Z
    ARRATIA, R
    [J]. ANNALS OF PROBABILITY, 1983, 11 (02) : 362 - 373
  • [4] Frenetic origin of negative differential response
    Baerts, Pieter
    Basu, Urna
    Maes, Christian
    Safaverdi, Soghra
    [J]. PHYSICAL REVIEW E, 2013, 88 (05):
  • [5] Active Particles in Complex and Crowded Environments
    Bechinger, Clemens
    Di Leonardo, Roberto
    Loewen, Hartmut
    Reichhardt, Charles
    Volpe, Giorgio
    Volpe, Giovanni
    [J]. REVIEWS OF MODERN PHYSICS, 2016, 88 (04)
  • [6] Microscopic Theory for Negative Differential Mobility in Crowded Environments
    Benichou, O.
    Illien, P.
    Oshanin, G.
    Sarracino, A.
    Voituriez, R.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (26)
  • [7] Intermittent search strategies
    Benichou, O.
    Loverdo, C.
    Moreau, M.
    Voituriez, R.
    [J]. REVIEWS OF MODERN PHYSICS, 2011, 83 (01) : 81 - 129
  • [8] Ultraslow vacancy-mediated tracer diffusion in two dimensions:: The Einstein relation verified -: art. no. 031101
    Bénichou, O
    Oshanin, G
    [J]. PHYSICAL REVIEW E, 2002, 66 (03):
  • [9] Berg HC., 2004, E COLI MOTION
  • [10] Hydrodynamic attraction of swimming microorganisms by surfaces
    Berke, Allison P.
    Turner, Linda
    Berg, Howard C.
    Lauga, Eric
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (03)