Artificial intelligence tor mechanical ventilation: systematic review of design, reporting standards, and bias

被引:35
作者
Gallifant, Jack [1 ]
Zhang, Joe [2 ,3 ]
Lopez, Maria Del Pilar Arias [4 ]
Zhu, Tingting [5 ]
Camporota, Luigi [1 ,2 ]
Celi, Leo A. [6 ,7 ,8 ]
Formenti, Federico [1 ,9 ,10 ]
机构
[1] Kings Coll London, Ctr Human & Appl Physiol Sci, Sch Basic & Med Biosci, London, England
[2] Guys & St Thomas NHS Fdn Trust, Kings Hlth Partners, Dept Adult Crit Care, London, England
[3] Imperial Coll London, Inst Global Hlth Innovat, London, England
[4] Argentine Soc Intens Care, SATI Q Program, Buenos Aires, DF, Argentina
[5] Univ Oxford, Dept Engn Sci, Inst Biomed Engn, Oxford, England
[6] MIT, Lab Computat Physiol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[7] Beth Israel Deaconess Med Ctr, Div Pulm Crit Care & Sleep Med, Boston, MA 02215 USA
[8] Harvard Univ, Dept Biostat, Harvard TH Chan Sch Publ Hlth, Boston, MA 02115 USA
[9] Univ Oxford, Nuffield Div Anaesthet, Oxford, England
[10] Univ Nebraska, Dept Biomech, Omaha, NE 68182 USA
基金
英国惠康基金; 美国国家卫生研究院;
关键词
artificial intelligence; bias; critical care; decision support; mechanical ventilation respiratory failure; PREDICTION; MORTALITY; DIAGNOSIS; MODEL;
D O I
10.1016/j.bja.2021.09.025
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
Background: Artificial intelligence (AI) has the potential to personalise mechanical ventilation strategies for patients with respiratory failure. However, current methodological deficiencies could limit clinical impact. We identified common limitations and propose potential solutions to facilitate translation of AI to mechanical ventilation of patients. Methods: A systematic review was conducted in MEDLINE, Embase, and PubMed Central to February 2021. Studies investigating the application of AI to patients undergoing mechanical ventilation were included. Algorithm design and adherence to reporting standards were assessed with a rubric combining published guidelines, satisfying the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis [TRIPOD] statement. Risk of bias was assessed by using the Prediction model Risk Of Bias ASsessment Tool (PROBAST), and correspondence with authors to assess data and code availability. Results: Our search identified 1,342 studies, of which 95 were included: 84 had single-centre, retrospective study design, with only one randomised controlled trial. Access to data sets and code was severely limited (unavailable in 85% and 87% of studies, respectively). On request, data and code were made available from 12 and 10 authors, respectively, from a list of 54 studies published in the last 5 yr. Ethnicity was frequently under-reported 18/95 (19%), as was model calibration 17/95 (18%). The risk of bias was high in 89% (85/95) of the studies, especially because of analysis bias. Conclusions: Development of algorithms should involve prospective and external validation, with greater code and data availability to improve confidence in and translation of this promising approach.
引用
收藏
页码:343 / 351
页数:9
相关论文
共 40 条
[1]  
[Anonymous], 2021, LANCET DIGIT HEALTH, V3, pE408, DOI 10.1016/S2589-7500(21)00113-8
[2]   The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database [J].
Benjamens, Stan ;
Dhunnoo, Pranavsingh ;
Mesko, Bertalan .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[3]  
Brower RG, 2004, NEW ENGL J MED, V351, P327
[4]   Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome A Randomized Clinical Trial [J].
Cavalcanti, Alexandre Biasi ;
Suzumura, Erica Aranha ;
Laranjeira, Ligia Nasi ;
Paisani, Denise de Moraes ;
Damiani, Lucas Petri ;
Guimaraes, Helio Penna ;
Romano, Edson Renato ;
Regenga, Marisa de Moraes ;
Taniguchi, Luzia Noriko Takahashi ;
Teixeira, Cassiano ;
de Oliveira, Roselaine Pinheiro ;
Machado, Flavia Ribeiro ;
Diaz-Quijano, Fredi Alexander ;
de Alencar Filho, Meton Soares ;
Maia, Israel Silva ;
Caser, Eliana Bernardete ;
de Oliveira Filho, Wilson ;
Borges, Marcos de Carvalho ;
Martins, Priscilla de Aquino ;
Matsui, Mirna ;
Ospina-Tascon, Gustavo Adolfo ;
Giancursi, Thiago Simoes ;
Giraldo-Rarnirez, Nelson Dario ;
Rios Vieira, Silvia Regina ;
Pasquotto de Lima Assef, Maria da Graca ;
Hasan, Mohd Shahnaz ;
Szczeklik, Wojciech ;
Rios, Fernando ;
Amato, Marcelo Britto Passos ;
Berwanger, Otavio ;
Ribeiro de Carvalho, Carlos Roberto .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (14) :1335-1345
[5]   "Big Data" in the Intensive Care Unit Closing the Data Loop [J].
Celi, Leo Anthony ;
Mark, Roger G. ;
Stone, David J. ;
Montgomery, Robert A. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2013, 187 (11) :1157-1160
[6]   Who does the model learn from? Comment [J].
Charpignon, Marie-Laure ;
Celi, Leo Anthony ;
Samuel, Mathew Cherian .
LANCET DIGITAL HEALTH, 2021, 3 (05) :E275-E276
[7]   Physiological and quantitative CT-scan characterization of COVID-19 and typical ARDS: a matched cohort study [J].
Chiumello, Davide ;
Busana, Mattia ;
Coppola, Silvia ;
Romitti, Federica ;
Formenti, Paolo ;
Bonifazi, Matteo ;
Pozzi, Tommaso ;
Palumbo, Maria Michela ;
Cressoni, Massimo ;
Herrmann, Peter ;
Meissner, Konrad ;
Quintel, Michael ;
Camporota, Luigi ;
Marini, John J. ;
Gattinoni, Luciano .
INTENSIVE CARE MEDICINE, 2020, 46 (12) :2187-2196
[8]   Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare [J].
Cirillo, Davide ;
Catuara-Solarz, Silvina ;
Morey, Czuee ;
Guney, Emre ;
Subirats, Laia ;
Mellino, Simona ;
Gigante, Annalisa ;
Valencia, Alfonso ;
Rementeria, Maria Jose ;
Chadha, Antonella Santuccione ;
Mavridis, Nikolaos .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[9]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.1002/bjs.9736, 10.1038/bjc.2014.639, 10.7326/M14-0697, 10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0698, 10.1136/bmj.g7594, 10.1111/eci.12376, 10.1016/j.eururo.2014.11.025, 10.1186/s12916-014-0241-z]
[10]   Personalised mechanical ventilation tailored to lung morphology versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): a multicentre, single-blind, randomised controlled trial [J].
Constantin, Jean-Michel ;
Jabaudon, Matthieu ;
Lefrant, Jean-Yves ;
Jaber, Samir ;
Quenot, Jean-Pierre ;
Langeron, Olivier ;
Ferrandiere, Martine ;
Grelon, Fabien ;
Seguin, Philippe ;
Ichai, Carole ;
Veber, Benoit ;
Souweine, Bertrand ;
Uberti, Thomas ;
Lasocki, Sigismond ;
Legay, Francois ;
Leone, Marc ;
Eisenmann, Nathanael ;
Dahyot-Fizelier, Claire ;
Dupont, Herve ;
Asehnoune, Karim ;
Sossou, Achille ;
Chanques, Gerald ;
Muller, Laurent ;
Bazin, Jean-Etienne ;
Monsel, Antoine ;
Borao, Lucile ;
Garcier, Jean-Marc ;
Rouby, Jean-Jacques ;
Pereira, Bruno ;
Futier, Emmanuel .
LANCET RESPIRATORY MEDICINE, 2019, 7 (10) :870-880