Discovery of the Biosynthetic Pathway of Beticolin 1 Reveals a Novel Non-Heme Iron-Dependent Oxygenase for Anthraquinone Ring Cleavage

被引:18
作者
Hou, Xiaodong [1 ]
Xu, Huibin [1 ]
Deng, Zhiwei [1 ]
Yan, Yijun [2 ]
Yuan, Zhenbo [1 ]
Liu, Xuanzhong [1 ]
Su, Zengping [1 ]
Yang, Sai [1 ]
Zhang, Yan [3 ]
Rao, Yijian [1 ]
机构
[1] Jiangnan Univ, Sch Biotechnol, Key Lab Carbohydrate Chem & Biotechnol, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
[2] Chinese Acad Sci, State Key Lab Phytochem & Plant Resources West Ch, Kunming Inst Bot, Kunming 650201, Yunnan, Peoples R China
[3] Jiangnan Univ, Sch Life Sci & Hlth Engn, Wuxi 214122, Jiangsu, Peoples R China
基金
国家重点研发计划;
关键词
Anthraquinone Ring Cleavage; Beticolin; 1; Biosynthetic Gene Cluster; Carboxylated-Lysine; Non-Heme Iron Oxygenase; BETA-LACTAMASE; CYTOCHROME-P450; MONOOXYGENASE; CERCOSPORIN; MECHANISM; INSIGHTS; ENZYME; DIMERS; LYSINE; FUNGUS;
D O I
10.1002/anie.202208772
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study used light-mediated comparative transcriptomics to identify the biosynthetic gene cluster of beticolin 1 in Cercospora. It contains an anthraquinone moiety and an unusual halogenated xanthone moiety connected by a bicyclo[3.2.2]nonane. During elucidation of the biosynthetic pathway of beticolin 1, a novel non-heme iron oxygenase BTG13 responsible for anthraquinone ring cleavage was discovered. More importantly, the discovery of non-heme iron oxygenase BTG13 is well supported by experimental evidence: (i) crystal structure and the inductively coupled plasma mass spectrometry revealed that its reactive site is built by an atypical iron ion coordination, where the iron ion is uncommonly coordinated by four histidine residues, an unusual carboxylated-lysine (Kcx377) and water; (ii) Kcx377 is mediated by His58 and Thr299 to modulate the catalytic activity of BTG13. Therefore, we believed this study updates our knowledge of metalloenzymes.
引用
收藏
页数:10
相关论文
共 44 条
[1]  
Vaillancourt F.H., Yin J., Walsh C.T., Proc. Natl. Acad. Sci. USA, 102, pp. 10111-10116, (2005)
[2]  
Falnes P.O., Klungland A., Alseth I., Neuroscience, 145, pp. 1222-1232, (2007)
[3]  
Barry S.M., Challis G.L., ACS Catal., 3, pp. 2362-2370, (2013)
[4]  
Guengerich F.P., Waterman M.R., Egli M., Trends Pharmacol. Sci., 37, pp. 625-640, (2016)
[5]  
Williams P.A., Cosme J., Sridhar V., Johnson E.F., McRee D.E., Mol. Cell, 5, pp. 121-131, (2000)
[6]  
Lukowski A.L., Liu J.X., Bridwell-Rabb J., Narayan A.R.H., Nat. Commun., 11, (2020)
[7]  
Perry C., de los Santos E.L.C., Alkhalaf L.M., Challis G.L., Nat. Prod. Rep., 35, pp. 622-632, (2018)
[8]  
Sydor P.K., Barry S.M., Odulate O.M., Barona-Gomez F., Haynes S.W., Corre C., Song L.J., Challis G.L., Nat. Chem., 3, pp. 388-392, (2011)
[9]  
Burzlaff N.I., Rutledge P.J., Clifton I.J., Hensgens C.M.H., Pickford M., Adlington R.M., Roach P.L., Baldwin J.E., Nature, 401, pp. 721-724, (1999)
[10]  
Liu X.Z., Yuan Z.B., Su H., Hou X.D., Deng Z.W., Xu H.B., Guo B.D., Yin D.J., Sheng X., Rao Y.J., ACS Catal., 12, pp. 3689-3699, (2022)