Enhanced thermoelectric performance of chalcopyrite nanocomposite via co-milling of synthetic and natural minerals

被引:15
作者
Balaz, Peter [1 ]
Dutkova, Erika [1 ]
Levinsky, Petr [2 ]
Daneu, Nina [3 ]
Kubickova, Lenka [2 ,4 ]
Knizek, Karel [2 ]
Balaz, Matej [1 ]
Navratil, Jiri [2 ,5 ]
Kasparova, Jana [5 ]
Ksenofontov, Vadim [4 ]
Moeller, Angela [4 ]
Hejtmanek, Jiri [2 ]
机构
[1] Slovak Acad Sci, Inst Geotech, Watsonova 45, Kosice 04001, Slovakia
[2] Czech Acad Sci, Inst Phys, Cukrovarnicka 10-112, Prague 16200, Czech Republic
[3] Jozef Stefan Inst, Adv Mat Dept, Jamova Cesta 3, SI-1000 Ljubljana, Slovenia
[4] Johannes Gutenberg Univ Mainz, Dept Chem, Duesbergweg 10-14, D-55128 Mainz, Germany
[5] Univ Pardubice, Fac Chem Technol, Studentska 573, Pardubice 53210, Czech Republic
关键词
Chalcopyrite; Nanocomposites; Mechanochemistry; Thermoelectrics; BULK THERMOELECTRICS; MOSSBAUER;
D O I
10.1016/j.matlet.2020.128107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Chalcopyrite CuFeS2 was shown to be a promising thermoelectric material. Considering thermoelectric efficiency, its relatively high and temperature weakly dependent power factor, economic affordability and ecological benignity is counterbalanced by a high lattice thermal conductivity. Thus it is highly desirable to lower the thermal conductivity of chalcopyrite thermoelectric material without deterioration of other thermoelectric characteristics. In our study, we demonstrate that mechanosynthesis followed by appropriate sintering enables to prepare such nanostructured ceramics with a favourable thermoelectric response. Our study shows that mechanosynthesis is a low-cost technological route for the production of thermoelectric chalcopyrite ceramics. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:4
相关论文
共 19 条
[1]   Chalcogenide mechanochemistry in materials science: insight into synthesis and applications (a review) [J].
Balaz, P. ;
Balaz, M. ;
Achimovicova, M. ;
Bujinakova, Z. ;
Dutkova, E. .
JOURNAL OF MATERIALS SCIENCE, 2017, 52 (20) :11851-11890
[2]  
Balaz P., 2008, MECHANOCHEMISTRY NAN
[3]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[4]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[5]   New directions for low-dimensional thermoelectric materials [J].
Dresselhaus, Mildred S. ;
Chen, Gang ;
Tang, Ming Y. ;
Yang, Ronggui ;
Lee, Hohyun ;
Wang, Dezhi ;
Ren, Zhifeng ;
Fleurial, Jean-Pierre ;
Gogna, Pawan .
ADVANCED MATERIALS, 2007, 19 (08) :1043-1053
[6]  
Habashi F., 1978, Chalcopyrite, its Chemistry and Metallurgy
[7]   Phonon diffraction and dimensionality crossover in phonon-interface scattering [J].
Hanus, Riley ;
Garg, Anupam ;
Snyder, G. Jeffery .
COMMUNICATIONS PHYSICS, 2018, 1
[8]   High performance bulk thermoelectrics via a panoscopic approach [J].
He, Jiaqing ;
Kanatzidis, Mercouri G. ;
Dravid, Vinayak P. .
MATERIALS TODAY, 2013, 16 (05) :166-176
[9]   Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides [J].
Hebert, S. ;
Berthebaud, D. ;
Daou, R. ;
Breard, Y. ;
Pelloquin, D. ;
Guilmeau, E. ;
Gascoin, F. ;
Lebedev, O. ;
Maignan, A. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (01)
[10]   When thermoelectrics reached the nanoscale [J].
Heremans, Joseph P. ;
Dresselhaus, Mildred S. ;
Bell, Lon E. ;
Morelli, Donald T. .
NATURE NANOTECHNOLOGY, 2013, 8 (07) :471-473