Locally efficient semiparametric estimators for generalized skew-elliptical distributions

被引:29
作者
Ma, YY [1 ]
Genton, MG
Tsiatis, AA
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
关键词
generalized skew-elliptical distribution; influence function; nuisance tangent space; selection model; semiparametric efficiency;
D O I
10.1198/016214505000000079
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a class of generalized skew-normal distributions that is useful for selection modeling and robustness analysis and derive a class of semiparametric estimators for the location and scale parameters of the central part of the model. We show that these estimators are consistent and asymptotically normal. We present the semiparametric efficiency bound and derive the locally efficient estimator that achieves this bound if the model for the skewing function is correctly specified. The estimators that we propose are consistent and asymptotically normal even if the model for the skewing function is misspecified, and we compute the loss of efficiency in such cases. We conduct a simulation study and provide an illustrative example. Our method is applicable to generalized skew-elliptical distributions.
引用
收藏
页码:980 / 989
页数:10
相关论文
共 12 条
[1]   Skewed multivariate models related to hidden truncation and/or selective reporting [J].
Arnold B.C. ;
Beaver R.J. .
Test, 2002, 11 (1) :7-54
[2]   The multivariate skew-normal distribution [J].
Azzalini, A ;
DallaValle, A .
BIOMETRIKA, 1996, 83 (04) :715-726
[3]  
BAYARRI MJ, 1992, BAYESIAN STAT, V4, P17
[4]  
Bickel P. J., 1993, EFFICIENT ADAPTIVE I
[5]   Inference for non-random samples [J].
Chesher, A .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1997, 59 (01) :77-95
[6]   UNIQUE CONSISTENT SOLUTION TO LIKELIHOOD EQUATIONS [J].
FOUTZ, RV .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1977, 72 (357) :147-148
[7]  
GENTON MG, 2005, IN PRESS ANN I STAT
[8]   Semiparametric Bayesian analysis of selection models [J].
Lee, JY ;
Berger, JO .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1397-1409
[9]   Flexible class of skew-symmetric distributions [J].
Ma, YY ;
Genton, MG .
SCANDINAVIAN JOURNAL OF STATISTICS, 2004, 31 (03) :459-468
[10]   SEMIPARAMETRIC EFFICIENCY BOUNDS [J].
NEWEY, WK .
JOURNAL OF APPLIED ECONOMETRICS, 1990, 5 (02) :99-135