Coral-like NixCo1-xSe2 for Na-ion battery with ultralong cycle life and ultrahigh rate capability

被引:93
作者
He, Yanyan [1 ,4 ]
Luo, Ming [1 ]
Dong, Caifu [1 ]
Ding, Xuyang [1 ]
Yin, Chaochuang [6 ]
Nie, Anmin [5 ]
Chen, Yanan [3 ,6 ]
Qian, Yitai [1 ]
Xu, Liqiang [1 ,2 ]
机构
[1] Shandong Univ, Sch Chem & Chem Engn, Minist Educ, Key Lab Colloid & Interface Chem, Jinan 250100, Shandong, Peoples R China
[2] Shandong Univ, Shenzhen Res Inst, A301,Virtural Univ Pk, Shenzhen 518057, Guangdong, Peoples R China
[3] Tsinghua Univ, Sch Life Sci, Beijing 100084, Peoples R China
[4] Qilu Univ Technol, Shandong Acad Sci, Sch Chem & Pharmaceut Engn, Key Lab Fine Chem Univ Shandong, Jinan 250353, Shandong, Peoples R China
[5] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
[6] Univ Shanghai Sci & Technol, Dept Environm Sci & Engn, Shanghai 200093, Peoples R China
关键词
HIGH-PERFORMANCE ANODE; NANOSHEET ARRAYS; SODIUM; CARBON; NANOPARTICLES; COMPOSITE; ELECTRODE; OXIDE; COSE2;
D O I
10.1039/c8ta10114k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Storage technology of electrical energy with ultrafast charge/discharge rates is in high demand for future electronics and electric vehicles. Among them, sodium ion batteries (SIBs) have received much attention, however, the exploration of electrode materials with a high rate capacity and long cycle life still faces great challenges. In this work, we have fabricated coralloid NixCo1-xSe2 with a hierarchical architecture for the first time, and it presents specific capacities of 321 mA h g(-1) after 2000 cycles at 2 A g(-1), corresponding to a capacity decay rate of 0.011% per-cycle, and 277 mA h g(-1) even at the high rate of 15 A g(-1), which could be attributed to the enhanced conductivity by Co-doping, the hierarchical architecture preventing the structure from collapsing or crushing, the accelerated electron transmission and the shortened diffusion distance of Na+. The extremely fast electron and Na ion transfer kinetics could be associated with the capacitive contribution. We further reveal the ultrastable and ultrahigh rate Na-ion storage mechanism through systematic analysis including compositional/structure evolution studies and comprehensive electrochemical characterizations. The presented strategy for the design and synthesis of coralloid, Co doped NiSe2 with a hierarchical architecture could enlighten researchers on the development of electrodes with an ultralong cycle life and ultrahigh rate capability.
引用
收藏
页码:3933 / 3940
页数:8
相关论文
共 48 条
[1]   Nanoflake-Assembled Hierarchical Na3V2(PO4)3/C Microflowers: Superior Li Storage Performance and Insertion/Extraction Mechanism [J].
An, Qinyou ;
Xiong, Fangyu ;
Wei, Qiulong ;
Sheng, Jinzhi ;
He, Liang ;
Ma, Dongling ;
Yao, Yan ;
Mai, Liqiang .
ADVANCED ENERGY MATERIALS, 2015, 5 (10)
[2]  
[Anonymous], J MAT CHEM A
[3]   Electrolytes, SEI Formation, and Binders: A Review of Nonelectrode Factors for Sodium-Ion Battery Anodes [J].
Bommier, Clement ;
Ji, Xiulei .
SMALL, 2018, 14 (16)
[4]  
Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
[5]   Templated Nanocrystal-Based Porous TiO2 Films for Next-Generation Electrochemical Capacitors [J].
Brezesinski, Torsten ;
Wang, John ;
Polleux, Julien ;
Dunn, Bruce ;
Tolbert, Sarah H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (05) :1802-1809
[6]   Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries [J].
Chen, Ji ;
Fan, Xiulin ;
Ji, Xiao ;
Gao, Tao ;
Hou, Singyuk ;
Zhou, Xiuquan ;
Wang, Luning ;
Wang, Fei ;
Yang, Chongyin ;
Chen, Long ;
Wang, Chunsheng .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (05) :1218-1225
[7]   Yolk-Shell NiS2 Nanoparticle-Embedded Carbon Fibers for Flexible Fiber-Shaped Sodium Battery [J].
Chen, Qi ;
Sun, Shuo ;
Zhai, Teng ;
Yang, Mei ;
Zhao, Xiangyu ;
Xia, Hui .
ADVANCED ENERGY MATERIALS, 2018, 8 (19)
[8]   Metal-Organic Framework Template Derived Porous CoSe2 Nanosheet Arrays for Energy Conversion and Storage [J].
Chen, Tian ;
Li, Songzhan ;
Wen, Jian ;
Gui, Pengbin ;
Fang, Guojia .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (41) :35927-35935
[9]   A facile sol-gel route to prepare functional graphene nanosheets anchored with homogeneous cobalt sulfide nanoparticles as superb sodium-ion anodes [J].
Chen, Tingting ;
Ma, Yifan ;
Guo, Qiubo ;
Yang, Mei ;
Xia, Hui .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (07) :3179-3185
[10]   First Introduction of NiSe2 to Anode Material for Sodium-Ion Batteries: A Hybrid of Graphene-Wrapped NiSe2/C Porous Nanofiber [J].
Cho, Jung Sang ;
Lee, Seung Yeon ;
Kang, Yun Chan .
SCIENTIFIC REPORTS, 2016, 6