SMOOTHNESS OF CONVOLUTION PRODUCTS OF ORBITAL MEASURES ON RANK ONE COMPACT SYMMETRIC SPACES

被引:2
作者
Hare, Kathryn E. [1 ]
He, Jimmy [1 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
rank one symmetric space; spherical functions; orbital measure; absolute continuity;
D O I
10.1017/S000497271500180X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that all convolution products of pairs of continuous orbital measures in rank one, compact symmetric spaces are absolutely continuous and determine which convolution products are in L-2 (meaning that their density function is in L-2). We characterise the pairs whose convolution product is either absolutely continuous or in L-2 in terms of the dimensions of the corresponding double cosets. In particular, we prove that if G/K is not SU(2)/SO(2), then the convolution of any two regular orbital measures is in L-2, while in SU(2)/SO(2) there are no pairs of orbital measures whose convolution product is in L-2.
引用
收藏
页码:131 / 143
页数:13
相关论文
共 15 条
[1]   Orbital Measures on SU(2)/SO(2) [J].
Anchouche, Boudjemaa ;
Gupta, Sanjiv Kumar ;
Plagne, Alain .
MONATSHEFTE FUR MATHEMATIK, 2015, 178 (04) :493-520
[2]  
[Anonymous], 2010, Handbook of Mathematical Functions
[3]  
[Anonymous], 1939, AM MATH SOC COLLOQ P
[4]  
[Anonymous], 2000, MATH SURVEYS MONOGRA
[5]  
Bump D., 2004, GRAD TEXT M, V225
[6]  
Cowling M.G., 1998, J GEOM ANAL, V8, P199
[7]  
Gindikin S, 2013, J LIE THEORY, V23, P257
[8]  
Graczyk P, 2010, J LIE THEORY, V20, P751
[9]   Absolute continuity of convolutions of orbital measures on Riemannian symmetric spaces [J].
Graczyk, Piotr ;
Sawyer, Patrice .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (07) :1759-1770
[10]   The smoothness of convolutions of zonal measures on compact symmetric spaces [J].
Gupta, Sanjiv K. ;
Hare, Kathryn E. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (02) :668-678