Wavelet-Based Quantum Field Theory

被引:13
|
作者
Altaisky, Mikhail V. [1 ,2 ]
机构
[1] Joint Inst Nucl Res, Dubna 141980, Russia
[2] Space Res Inst RAS, Moscow 117997, Russia
关键词
wavelets; quantum field theory; regularisation;
D O I
10.3842/SIGMA.2007.105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Euclidean quantum field theory for the fields phi(Delta x)(x), which depend on both the position x and the resolution Delta x, constructed in SIGMA 2 ( 2006), 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Are there any Landau poles in wavelet-based quantum field theory?
    Altaisky, Mikhail
    Hnatich, Michal
    PHYSICAL REVIEW D, 2023, 108 (08)
  • [2] Wavelet-based field theory and cross-scale correlations
    Altaisky, Mikhail V.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE DAYS ON DIFFRACTION 2008, 2008, : 7 - 13
  • [3] ANISOTROPY IN WAVELET-BASED PHASE FIELD MODELS
    Korzec, Maciek
    Muench, Andreas
    Sueli, Endre
    Wagner, Barbara
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (04): : 1167 - 1187
  • [4] Wavelet-based and fractal theory on partial discharge classification
    Du, BX
    Wei, GZ
    Wu, Y
    Ouyang, MJ
    PROCEEDINGS OF THE 2005 INTERNATIONAL SYMPOSIUM ON ELECTRICAL INSULATING MATERIALS, VOLS, 1-3, 2005, : 463 - 466
  • [5] An efficient wavelet-based solution of electromagnetic field problems
    Rickard, Yotka
    APPLIED NUMERICAL MATHEMATICS, 2008, 58 (04) : 472 - 485
  • [6] A novel wavelet-based method for EM field simulation
    Pertz, O
    Beyer, A
    33RD EUROPEAN MICROWAVE CONFERENCE, VOLS 1-3, CONFERENCE PROCEEDINGS, 2003, : 111 - 114
  • [7] Continuous wavelet transform in quantum field theory
    Altaisky, M. V.
    Kaputkina, N. E.
    PHYSICAL REVIEW D, 2013, 88 (02):
  • [8] Wavelet-based deconvolution
    Novikov, L. V.
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2007, 50 (01) : 61 - 67
  • [9] Wavelet-Based Multiresolution with
    Lars Linsen
    Bernd Hamann
    Kenneth I. Joy
    Valerio Pascucci
    Mark A. Duchaineau
    Computing, 2004, 72 : 129 - 142
  • [10] Wavelet-based watermarking algorithms: theory, applications and critical aspects
    Agreste, S.
    Puccio, L.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (09) : 1885 - 1895