Molecular dynamics study of water in contact with the TiO2 rutile-110, 100, 101, 001 and anatase-101, 001 surface

被引:78
|
作者
Kavathekar, Ritwik S.
Dev, Pratibha
English, Niall J. [1 ]
MacElroy, J. M. D.
机构
[1] Univ Coll Dublin, SFI Strateg Res Cluster Solar Energy Convers, Dublin 4, Ireland
基金
爱尔兰科学基金会;
关键词
molecular dynamics; TiO2; surface; oxide-water interface; rutile; anatase; VISIBLE-LIGHT; HYDROGEN EVOLUTION; HYDRATION WATER; TIO2(110); PHOTOCATALYST; DISSOCIATION; 1ST-PRINCIPLES; ADSORPTION; SIMULATION; INTERFACE;
D O I
10.1080/00268976.2011.582051
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have carried out classical molecular dynamics of various surfaces of TiO2 with its interface with water. We report the geometrical features of the first and second monolayers of water using a Matsui Akaogi (MA) force field for the TiO2 surface and a flexible single point charge model for the water molecules. We show that the MA force field can be applied to surfaces other than rutile (110). It was found that water OH bond lengths, H-O-H bond angles and dipole moments do not vary due to the nature of the surface. However, their orientation within the first and second monolayers suggest that planar rutile (001) and anatase (001) surfaces may play an important role in not hindering removal of the products formed on these surfaces. Also, we discuss the effect of surface termination in order to explain the layering of water molecules throughout the simulation box.
引用
收藏
页码:1649 / 1656
页数:8
相关论文
共 50 条
  • [1] Optimisation of accurate rutile TiO2 (110), (100), (101) and (001) surface models from periodic DFT calculations
    Perron, H.
    Domain, C.
    Roques, J.
    Drot, R.
    Simoni, E.
    Catalette, H.
    THEORETICAL CHEMISTRY ACCOUNTS, 2007, 117 (04) : 565 - 574
  • [2] Optimisation of accurate rutile TiO2 (110), (100), (101) and (001) surface models from periodic DFT calculations
    H. Perron
    C. Domain
    J. Roques
    R. Drot
    E. Simoni
    H. Catalette
    Theoretical Chemistry Accounts, 2007, 117 : 565 - 574
  • [3] WO3 Monomers Supported on Anatase TiO2(101), -(001), and Rutile TiO2(110): A Comparative STM and XPS Study
    Xu, Tao
    Adamsen, Kraen C.
    Li, Zheshen
    Lammich, Lutz
    Lauritsen, Jeppe, V
    Wendt, Stefan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (05) : 2493 - 2502
  • [4] Self-Diffusion of Individual Adsorbed Water Molecules at Rutile (110) and Anatase (101) TiO2 Interfaces from Molecular Dynamics
    Boyd, Stephanie J.
    O'Carroll, Daire
    Krishnan, Yogeshwaran
    Long, Run
    English, Niall J.
    CRYSTALS, 2022, 12 (03)
  • [5] Adsorption of Eu atom at the TiO2 Anatase (101) and Rutile (110) Surfaces
    Nigam, Sandeep
    Sahoo, Suman Kalyan
    Sarkar, Pranab
    Majumder, Chiranjib
    SOLID STATE PHYSICS, VOL 57, 2013, 1512 : 290 - 291
  • [6] Active Sites for Adsorption and Reaction of Molecules on Rutile TiO2(110) and Anatase TiO2(001) Surfaces
    Tan, Shi-jing
    Wang, Bing
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2015, 28 (04) : 383 - 395
  • [7] Roles of (001) and (101) Facets of Anatase TiO2 in Photocatalytic Reactions
    Wang Xiang
    Li Ren-Gui
    Xu Qian
    Han Hong-Xian
    Li Can
    ACTA PHYSICO-CHIMICA SINICA, 2013, 29 (07) : 1566 - 1571
  • [8] Interface Water on TiO2 Anatase (101) and (001) Surfaces: First-Principles Study with TiO2 Slabs Dipped in Bulk Water
    Sumita, Masato
    Hu, Chunping
    Tateyama, Yoshitaka
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (43) : 18529 - 18537
  • [9] The surface reactivity and structural properties of anatase TiO2 (001), (100), (101) and (105) surface researched with DFT
    Wang, Jing-Zhou
    Zhou, Jian-Ping
    Wang, Yuan
    Miao, Nan-xi
    Guo, Ze-Qing
    Lei, Yu-Xi
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2019, 89 (01) : 193 - 197
  • [10] Theoretical study on degradation mechanism of ornidazole on anatase TiO2(101) and (001) surfaces
    Wang, Danyang
    Qin, Haichuan
    Qin, Qiaoqiao
    Liu, Xiang-Yang
    Li, Laicai
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (07) : 2733 - 2740