SD-DefSLAM: Semi-Direct Monocular SLAM for Deformable and Intracorporeal Scenes

被引:23
作者
Gomez-Rodriguez, Juan J. [1 ]
Lamarca, Jose [1 ]
Morlana, Javier [1 ]
Tardos, Juan D. [1 ]
Montiel, Jose M. M. [1 ]
机构
[1] Univ Zaragoza, Inst Invest Ingn Aragon I3A, Maria de Luna 1, Zaragoza 50018, Spain
来源
2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021) | 2021年
基金
欧盟地平线“2020”;
关键词
TRACKING; FEATURES;
D O I
10.1109/ICRA48506.2021.9561512
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Conventional SLAM techniques strongly rely on scene rigidity to solve data association, ignoring dynamic parts of the scene. In this work we present Semi-Direct DefSLAM (SD-DefSLAM), a novel monocular delirmable SLAM method able to map highly deforming environments, built on top of DefSLAM [1]. To robustly solve data association in challenging deforming scenes, SD-DefSLAM combines direct and indirect methods: an enhanced illumination-invariant Lucas-Kanade tracker for data association, geometric Bundle Adjustment for pose and deformable map estimation, and bag-of-words based on feature descriptors for camera relocalization. Dynamic objects are detected and segmented-out using a CNN trained for the specific application domain. We thoroughly evaluate our system in two public datasets. The mandala dalaset is a SLAM benchmark with increasingly aggressive deformations. The Hamlyn dataset contains intracorporeal sequences that pose serious real-life challenges beyond deformation like weak texture, specular reflections, surgical tools and occlusions. Our results show that SD-DefSLAM outperforms DefSLAM in point tracking, reconstruction accuracy and scale drift thanks to the improvement in all the data association steps, being the first system able to robustly perform SLAM inside the human body.
引用
收藏
页码:5170 / 5177
页数:8
相关论文
共 38 条
[1]   Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces [J].
Alcantarilla, Pablo F. ;
Nuevo, Jesus ;
Bartoli, Adrien .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2013, 2013,
[2]  
Alzarouni K, 2016, IEEE INT CONF INNOV, P72
[3]  
[Anonymous], 2001, Tech. Rep.
[4]   Lucas-Kanade 20 years on: A unifying framework [J].
Baker, S ;
Matthews, I .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 56 (03) :221-255
[5]  
Ballester I., 2020, ARXIV201000052
[6]   DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes [J].
Bescos, Berta ;
Facil, Jose M. ;
Civera, Javier ;
Neira, Jose .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (04) :4076-4083
[7]  
Campos C., 2020, ORB-SLAM3: An Accurate Open- Source Library for Visual, Visual-Inertial and Multi- Map SLAM
[8]   Inverse Depth Parametrization for Monocular SLAM [J].
Civera, Javier ;
Davison, Andrew J. ;
Montiel, J. M. Martinez .
IEEE TRANSACTIONS ON ROBOTICS, 2008, 24 (05) :932-945
[9]   MonoSLAM: Real-time single camera SLAM [J].
Davison, Andrew J. ;
Reid, Ian D. ;
Molton, Nicholas D. ;
Stasse, Olivier .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (06) :1052-1067
[10]   Robust surface tracking combining features, intensity and illumination compensation [J].
Du, Xiaofei ;
Clancy, Neil ;
Arya, Shobhit ;
Hanna, George B. ;
Kelly, John ;
Elson, Daniel S. ;
Stoyanov, Danail .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2015, 10 (12) :1915-1926