Cut-elimination theorems for some infinitary modal logics

被引:0
作者
Tanaka, Y [1 ]
机构
[1] Kyushu Sangyo Univ, Higashi Ku, Fukuoka 8138503, Japan
关键词
infinitary logic; modal logic; cut-elimination;
D O I
10.1002/1521-3870(200108)47:3<327::AID-MALQ327>3.0.CO;2-P
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, a cut-free system TLMomega1 for infinitary propositional modal logic is proposed which is complete with respect to the class of all Kripke frames. The system TLMomega1 is a kind of Gentzen style sequent calculus, but a sequent of TLMomega1 is defined as a finite tree of sequents in a standard sense. We prove the cut-elimination theorem for TLMomega1 via its Kripke completeness.
引用
收藏
页码:327 / 339
页数:13
相关论文
共 16 条
[1]  
[Anonymous], 1959, Osaka Mathematical Journal
[2]  
Avron A., 1996, LOGIC FDN APPL, P1
[3]  
Buss Sr, 1998, STUD LOGIC, V137, P1
[4]   AN INFINITARY GRADED MODAL LOGIC (GRADED MODALITIES-VI) [J].
FATTOROSIBARNABA, M ;
GRASSOTTI, S .
MATHEMATICAL LOGIC QUARTERLY, 1995, 41 (04) :547-563
[5]  
Feferman S., 1967, LECT NOTES MATH, V70, P1
[6]   LOGIC STRONGER THAN INTUITIONISM [J].
GORNEMANN, S .
JOURNAL OF SYMBOLIC LOGIC, 1971, 36 (02) :249-+
[7]  
KANEKO M, 1997, STUDIA LOGICA, V58, P273
[8]   CUT-ELIMINATION THEOREM FOR THE LOGIC OF CONSTANT DOMAINS [J].
KASHIMA, R ;
SHIMURA, T .
MATHEMATICAL LOGIC QUARTERLY, 1994, 40 (02) :153-172
[9]  
NADEL M., 1985, MODEL THEORETIC LOGI, P271
[10]  
Ohnishi M., 1957, OSAKA MATH J, V9, P113