Dislocation interactions and low-angle grain boundary strengthening

被引:109
作者
Liu, B. [1 ]
Raabe, D. [1 ]
Eisenlohr, P. [1 ]
Roters, F. [1 ]
Arsenlis, A. [2 ]
Hommes, G. [2 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
Dislocation dynamics; Strength; Dislocation reactions; Dislocation interactions; Low-angle grain boundary; CRYSTAL PLASTICITY; FCC METALS; SIMULATIONS; DYNAMICS; JUNCTIONS; DEFORMATION; SCALE; IRON; FLOW;
D O I
10.1016/j.actamat.2011.07.067
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The transmission of an incoming dislocation through a symmetrical low-angle tilt grain boundary (GB) is studied for {110} < 111 > slip systems in body-centered cubic metals using discrete dislocation dynamics (DD) simulations. The transmission resistance is quantified in terms of the different types of interactions between the incoming and GB dislocations. Five different dislocation interaction types are considered: collinear, mixed-symmetrical junction, mixed-asymmetrical junction, edge junction, and coplanar. Mixed-symmetrical junction formation events are found not only to cause a strong resistance against the incident dislocation penetration, but also to transform the symmetrical low-angle tilt GB into a hexagonal network (a general low-angle GB). The interactions between the incident dislocation and the GB dislocations can form an array of < 100 > dislocations (binary junctions) in non-coplanar interactions, or a single < 100 > dislocation in coplanar interaction. We study how the transmission resistance depends on the mobility of < 100 > dislocations. < 100 > dislocations have usually been treated as immobile in DD simulations. In this work, we discuss and implement the mobility law for < 100 > dislocations. As an example, we report how the mobility of < 100 > dislocations affects the equilibrium configuration of a ternary dislocation interaction. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:7125 / 7134
页数:10
相关论文
共 30 条
[1]   Enabling strain hardening simulations with dislocation dynamics [J].
Arsenlis, A. ;
Cai, W. ;
Tang, M. ;
Rhee, M. ;
Oppelstrup, T. ;
Hommes, G. ;
Pierce, T. G. ;
Bulatov, V. V. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2007, 15 (06) :553-595
[2]   Connecting atomistic and mesoscale simulations of crystal plasticity [J].
Bulatov, V ;
Abraham, FF ;
Kubin, L ;
Devincre, B ;
Yip, S .
NATURE, 1998, 391 (6668) :669-672
[3]   Dislocation multi-junctions and strain hardening [J].
Bulatov, VV ;
Hsiung, LL ;
Tang, M ;
Arsenlis, A ;
Bartelt, MC ;
Cai, W ;
Florando, JN ;
Hiratani, M ;
Rhee, M ;
Hommes, G ;
Pierce, TG ;
de la Rubia, TD .
NATURE, 2006, 440 (7088) :1174-1178
[4]   A non-singular continuum theory of dislocations [J].
Cai, W ;
Arsenlis, A ;
Weinberger, CR ;
Bulatov, VV .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2006, 54 (03) :561-587
[5]   Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale [J].
Csikor, Ferenc F. ;
Motz, Christian ;
Weygand, Daniel ;
Zaiser, Michael ;
Zapperi, Stefano .
SCIENCE, 2007, 318 (5848) :251-254
[6]   Dislocation mean free paths and strain hardening of crystals [J].
Devincre, B. ;
Hoc, T. ;
Kubin, L. .
SCIENCE, 2008, 320 (5884) :1745-1748
[7]   Physical analyses of crystal plasticity by DD simulations [J].
Devincre, B ;
Kubin, L ;
Hoc, T .
SCRIPTA MATERIALIA, 2006, 54 (05) :741-746
[8]   A study of dislocation junctions in FCC metals by an orientation dependent line tension model [J].
Dupuy, L ;
Fivel, MC .
ACTA MATERIALIA, 2002, 50 (19) :4873-4885
[9]   A self-consistent boundary element, parametric dislocation dynamics formulation of plastic flow in finite volumes [J].
El-Awady, Jaafar A. ;
Biner, S. Bulent ;
Ghoniem, Nasr M. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2008, 56 (05) :2019-2035
[10]   The role of the weakest-link mechanism in controlling the plasticity of micropillars [J].
El-Awady, Jaafar A. ;
Wen, Ming ;
Ghoniem, Nasf M. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2009, 57 (01) :32-50