Global Mild Solutions of Navier-Stokes Equations

被引:139
作者
Lei, Zhen [1 ]
Lin, Fanghua [2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] NYU, Courant Inst, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
D O I
10.1002/cpa.20361
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a global well-posedness of mild solutions to the three-dimensional, incompressible Navier-Stokes equations if the initial data are in the space chi(-1) defined by chi(-1) = {f is an element of D' (R(3)) : integral R(3) vertical bar xi vertical bar(-1) vertical bar(f) over cap vertical bar d xi < infinity and if the norms of the initial data in chi(-1) are bounded exactly by the viscosity coefficient mu. (C) 2011 Wiley Periodicals, Inc.
引用
收藏
页码:1297 / 1304
页数:8
相关论文
共 11 条
[1]  
[Anonymous], 1999, QUAD MAT DEP MATH SE
[2]  
Cannone M., 1995, Ondelettes, paraproduits et NavierStokes
[3]   Wellposedness and stability results for the Navier-Stokes equations in R3 [J].
Chemin, Jean-Yves ;
Gallagher, Isabelle .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (02) :599-624
[4]   GLOBAL EXISTENCE FOR THE INCOMPRESSIBLE NAVIER-STOKES SYSTEM [J].
CHEMIN, JY .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (01) :20-28
[5]   ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1. [J].
FUJITA, H ;
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) :269-315
[6]  
Hopf E., 1951, Math. Nachr., V4, P213, DOI [/10.1002/mana.3210040121, DOI 10.1002/MANA.3210040121]
[8]   Well-posedness for the Navier-Stokes equations [J].
Koch, H ;
Tataru, D .
ADVANCES IN MATHEMATICS, 2001, 157 (01) :22-35
[9]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[10]  
Majda A, 2002, CAMBRIDGE TEXTS APPL, V27