Achromatic numbers of Kneser graphs

被引:1
作者
Araujo-Pardo, Gabriela [1 ]
Carlos Diaz-Patino, Juan [1 ]
Rubio-Montiel, Christian [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Unidad Juriquilla, Inst Matemat, Campus Juriquilla, Queretaro City 76230, Mexico
[2] Univ Nacl Autonoma Mexico, Div Matemat & Ingn, FES Acatlan, Acatlan 53150, Naucalpan De Ju, Mexico
关键词
Achromatic number; pseudoachromatic number; Grundy number; block designs; geometric type Kneser graphs; CHROMATIC NUMBER; DESIGNS; S3(3;
D O I
10.26493/1855-3974.2357.373
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Complete vertex colorings have the property that any two color classes have at least an edge between them. Parameters such as the Grundy, achromatic and pseudoachromatic numbers come from complete colorings, with some additional requirement. In this paper, we estimate these numbers in the Kneser graph K(n, k) for some values of n and k. We give the exact value of the achromatic number of K(n, 2)
引用
收藏
页数:13
相关论文
共 22 条
[1]   Geometric Achromatic and Pseudoachromatic Indices [J].
Aichholzer, O. ;
Araujo-Pardo, G. ;
Garcia-Colin, N. ;
Hackl, T. ;
Lara, D. ;
Rubio-Montiel, C. ;
Urrutia, J. .
GRAPHS AND COMBINATORICS, 2016, 32 (02) :431-451
[2]  
Aigner M., 2018, Proofs from The Book, V6th, DOI [DOI 10.1007/978-3-662-44205-0, 10.1007/978-3-662-57265-8, DOI 10.1007/978-3-662-57265-8]
[3]   On the chromatic number of some geometric type Kneser graphs [J].
Araujo, G ;
Dumitrescu, A ;
Hurtado, F ;
Noy, A ;
Urrutia, J .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2005, 32 (01) :59-69
[4]  
Araujo-Pardo G., 2016, ELECT NOTES DISCRETE, V54, P253
[5]  
Beth T., 1999, Design Theory, V1, DOI DOI 10.1017/CBO9780511549533
[6]  
Beth T., 1999, DESIGN THEORY, V78, DOI [10.1017/cbo9781139507660.003, DOI 10.1017/CBO9781139507660.003]
[7]   Geometric graphs with no three disjoint edges [J].
Cerny, J .
DISCRETE & COMPUTATIONAL GEOMETRY, 2005, 34 (04) :679-695
[8]  
Chartrand G, 2009, CRC DISCR MATH APPL, P1
[9]   The equitable colorings of Kneser graphs [J].
Chen, Bor-Liang ;
Huang, Kuo-Ching .
TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (04) :887-900
[10]   ON SETS OF DISTANCES OF N-POINTS [J].
ERDOS, P .
AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (07) :738-+