MicroRNA-146a and-21 cooperate to regulate vascular smooth muscle cell proliferation via modulation of the Notch signaling pathway

被引:37
作者
Cao, Jian [1 ]
Zhang, Kui [1 ]
Zheng, Jubing [1 ]
Dong, Ran [1 ]
机构
[1] Capital Med Univ, Dept Cardiac Surg, Beijing Anzhen Hosp, Beijing 100029, Peoples R China
关键词
microRNA-146a; microRNA-21; vascular smooth muscle cell; Notch2; Jag1; GROWTH-FACTOR; EXPRESSION;
D O I
10.3892/mmr.2014.3107
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
A number of microRNAs (miRs) have been shown to participate in the regulation of vascular smooth muscle cell (VSMC) proliferation, a key step in the formation of atherosclerotic plaque, by targeting certain genes. The aim of the present study was to investigate the roles of miR-146a and miR-21 in VSMC growth and to study the underlying mechanisms. The expression levels of four previously reported, differentially expressed microRNAs in atherosclerotic plaque (miR-146a/b, miR-21, miR-34a and miR-210) were measured in two groups: An atherosclerotic plaque group (n=10) and a normal control group (n=10). Polymerase chain reaction (PCR) analysis revealed that the relative expression levels of miR-146a and miR-21 in atherosclerotic plaque samples were significantly upregulated to similar to 260 and 250%, respectively, compared with those in normal controls. Notch2 and Jag1 were confirmed to be target genes of miR-146a and miR-21 through the use of a luciferase assay, PCR and western blot analysis. Additionally, VSMCs transfected with miR-146a expressed significantly lower levels of Notch2 protein and presented an accelerated cell proliferation, which could be attributed to a reduction in the levels of cell cycle arrest. Cotransfection of miR-146a and miR-21 further promoted cell cycle progression in addition to VSMC proliferation. In conclusion, the present study revealed that miR-146a and miR-21 were significantly upregulated in atherosclerotic plaque, and cooperated to accelerate VSMC growth and cell cycle progression by targeting Notch2 and Jag1.
引用
收藏
页码:2889 / 2895
页数:7
相关论文
共 25 条
[1]   Epigenetic Control of Smooth Muscle Cell Differentiation and Phenotypic Switching in Vascular Development and Disease [J].
Alexander, Matthew R. ;
Owens, Gary K. .
ANNUAL REVIEW OF PHYSIOLOGY, VOL 74, 2012, 74 :13-40
[2]   Platelet-derived growth factor - Distinct signal transduction pathways associated with migration versus proliferation [J].
Bornfeldt, KE ;
Raines, EW ;
Graves, LM ;
Skinner, MP ;
Krebs, EG ;
Ross, R .
RECEPTOR ACTIVATION BY ANTIGENS, CYTOKINES, HORMONES, AND GROWTH FACTORS, 1995, 766 :416-430
[3]   A Receptor-Specific Function for Notch2 in Mediating Vascular Smooth Muscle Cell Growth Arrest Through Cyclin-dependent Kinase Inhibitor 1B [J].
Boucher, Joshua M. ;
Harrington, Anne ;
Rostama, Bahman ;
Lindner, Volkhard ;
Liaw, Lucy .
CIRCULATION RESEARCH, 2013, 113 (08) :975-985
[4]   bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila [J].
Brennecke, J ;
Hipfner, DR ;
Stark, A ;
Russell, RB ;
Cohen, SM .
CELL, 2003, 113 (01) :25-36
[5]   MicroRNA-155 function in B cells [J].
Calame, Kathryn .
IMMUNITY, 2007, 27 (06) :825-827
[6]   Notch Signaling in Prostate Cancer: A Moving Target [J].
Carvalho, Filipe L. F. ;
Simons, Brian W. ;
Eberhart, Charles G. ;
Berman, David M. .
PROSTATE, 2014, 74 (09) :933-945
[7]   MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages [J].
Chen, Ting ;
Huang, Zhouqing ;
Wang, Liansheng ;
Wang, Yue ;
Wu, Feizhen ;
Meng, Shu ;
Wang, Changqian .
CARDIOVASCULAR RESEARCH, 2009, 83 (01) :131-139
[8]   miR-145 and miR-143 regulate smooth muscle cell fate and plasticity [J].
Cordes, Kimberly R. ;
Sheehy, Neil T. ;
White, Mark P. ;
Berry, Emily C. ;
Morton, Sarah U. ;
Muth, Alecia N. ;
Lee, Ting-Hein ;
Miano, Joseph M. ;
Ivey, Kathryn N. ;
Srivastava, Deepak .
NATURE, 2009, 460 (7256) :705-U80
[9]   Induction of MicroRNA-221 by Platelet-derived Growth Factor Signaling Is Critical for Modulation of Vascular Smooth Muscle Phenotype [J].
Davis, Brandi N. ;
Hilyard, Aaron C. ;
Nguyen, Peter H. ;
Lagna, Giorgio ;
Hata, Akiko .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (06) :3728-3738
[10]   Role of smooth muscle cells in the initiation and early progression of atherosclerosis [J].
Doran, Amanda C. ;
Meller, Nahum ;
McNamara, Coleen A. .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2008, 28 (05) :812-819