Lattice points on hyperboloids of one sheet

被引:0
作者
Baragar, Arthur [1 ]
机构
[1] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
来源
NEW YORK JOURNAL OF MATHEMATICS | 2014年 / 20卷
关键词
Gauss' circle problem; lattice points; orbits; Hausdorff dimension; ample cone; KLEINIAN-GROUPS; K3; SURFACES; LIMIT-SETS; SPACE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of counting lattice points on a hyperboloid of two sheets is Gauss' circle problem in hyperbolic geometry. The problem of counting lattice points on a hyperboloid of one sheet does not have the same geometric interpretation, and in general, the solution(s) to Gauss' circle problem gives a lower bound, but not an upper bound. In this paper, we describe an exception. Given an ample height, and a lattice on a hyperboloid of one sheet generated by a point in the interior of the effective cone, the problem can be reduced to Gauss' circle problem.
引用
收藏
页码:1253 / 1268
页数:16
相关论文
共 50 条
[31]   Observability on lattice points for heat equations and applications [J].
Wang, Ming ;
Zhang, Can ;
Zhang, Liang .
SYSTEMS & CONTROL LETTERS, 2019, 134
[32]   The convex hull of the lattice points inside a curve [J].
M. N. Huxley .
Periodica Mathematica Hungarica, 2014, 68 :100-118
[33]   SOME GENERALIZATION OF STEINHAUS' LATTICE POINTS PROBLEM [J].
Zwolenski, Pawel .
COLLOQUIUM MATHEMATICUM, 2011, 123 (01) :129-132
[34]   The convex hull of the lattice points inside a curve [J].
Huxley, M. N. .
PERIODICA MATHEMATICA HUNGARICA, 2014, 68 (01) :100-118
[35]   Lattice points in stretched finite type domains [J].
Guo, Jingwei ;
Jiang, Tao .
JOURNAL OF NUMBER THEORY, 2023, 242 :1-20
[36]   Factors of almost squares and lattice points on circles [J].
Chan, Tsz Ho .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (05) :1701-1708
[37]   Visible lattice points and the Extended Lindelof Hypothesis [J].
Takeda, Wataru .
JOURNAL OF NUMBER THEORY, 2017, 180 :297-309
[38]   On two lattice points problems about the parabola [J].
Huang, Jing-Jing ;
Li, Huixi .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (04) :719-729
[39]   On a question regarding visibility of lattice points - III [J].
Das Adhikari, S ;
Chen, YG .
DISCRETE MATHEMATICS, 2002, 259 (1-3) :251-256
[40]   On the distribution of lattice points on spheres and level surfaces of polynomials [J].
Magyar, Akos .
JOURNAL OF NUMBER THEORY, 2007, 122 (01) :69-83