Lattice points on hyperboloids of one sheet

被引:0
作者
Baragar, Arthur [1 ]
机构
[1] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
来源
NEW YORK JOURNAL OF MATHEMATICS | 2014年 / 20卷
关键词
Gauss' circle problem; lattice points; orbits; Hausdorff dimension; ample cone; KLEINIAN-GROUPS; K3; SURFACES; LIMIT-SETS; SPACE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of counting lattice points on a hyperboloid of two sheets is Gauss' circle problem in hyperbolic geometry. The problem of counting lattice points on a hyperboloid of one sheet does not have the same geometric interpretation, and in general, the solution(s) to Gauss' circle problem gives a lower bound, but not an upper bound. In this paper, we describe an exception. Given an ample height, and a lattice on a hyperboloid of one sheet generated by a point in the interior of the effective cone, the problem can be reduced to Gauss' circle problem.
引用
收藏
页码:1253 / 1268
页数:16
相关论文
共 50 条
[21]   AVERAGE NUMBER OF LATTICE POINTS IN A DISK [J].
Jayakar, Sujay ;
Strichartz, Robert S. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (01) :1-8
[22]   Lattice points in bodies with algebraic boundary [J].
Müller, W .
ACTA ARITHMETICA, 2003, 108 (01) :9-24
[23]   On the Number of Lattice Points in the Shifted Circles [J].
Jabbarov, Ilgar Sh ;
Aslanova, Natiga Sh ;
Jeferli, Esmira, V .
AZERBAIJAN JOURNAL OF MATHEMATICS, 2020, 10 (02) :175-190
[24]   Optimal stretching for lattice points and eigenvalues [J].
Laugesen, Richard S. ;
Liu, Shiya .
ARKIV FOR MATEMATIK, 2018, 56 (01) :111-145
[25]   Integer chords and configurations of lattice points [J].
Huxley, M. N. ;
Plunkett, S. M. .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (02) :534-545
[26]   Lattice points in large convex bodies [J].
Müller, W .
MONATSHEFTE FUR MATHEMATIK, 1999, 128 (04) :315-330
[27]   Lattice points below algebraic curves [J].
Peter, M .
MONATSHEFTE FUR MATHEMATIK, 1996, 121 (04) :335-352
[28]   Visible lattice points along curves [J].
Liu, Kui ;
Meng, Xianchang .
RAMANUJAN JOURNAL, 2021, 56 (03) :1073-1086
[29]   The Number of Lattice Points and T-Points on a Line in R-2 [J].
Cao, P. H. ;
Yuan, L. P. .
SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2014, 38 (01) :21-25
[30]   CRITICAL BROWNIAN SHEET DOES NOT HAVE DOUBLE POINTS [J].
Dalang, Robert C. ;
Khoshnevisan, Davar ;
Nualart, Eulalia ;
Wu, Dongsheng ;
Xiao, Yimin .
ANNALS OF PROBABILITY, 2012, 40 (04) :1829-1859