Lattice points on hyperboloids of one sheet

被引:0
作者
Baragar, Arthur [1 ]
机构
[1] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
来源
NEW YORK JOURNAL OF MATHEMATICS | 2014年 / 20卷
关键词
Gauss' circle problem; lattice points; orbits; Hausdorff dimension; ample cone; KLEINIAN-GROUPS; K3; SURFACES; LIMIT-SETS; SPACE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of counting lattice points on a hyperboloid of two sheets is Gauss' circle problem in hyperbolic geometry. The problem of counting lattice points on a hyperboloid of one sheet does not have the same geometric interpretation, and in general, the solution(s) to Gauss' circle problem gives a lower bound, but not an upper bound. In this paper, we describe an exception. Given an ample height, and a lattice on a hyperboloid of one sheet generated by a point in the interior of the effective cone, the problem can be reduced to Gauss' circle problem.
引用
收藏
页码:1253 / 1268
页数:16
相关论文
共 50 条
  • [21] A note on an inverse problem for lattice points
    Ljujic, Zeljka
    Sanabria, Camilo
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (08) : 1012 - 1018
  • [22] Lattice points in bodies with algebraic boundary
    Müller, W
    ACTA ARITHMETICA, 2003, 108 (01) : 9 - 24
  • [23] On the Number of Lattice Points in the Shifted Circles
    Jabbarov, Ilgar Sh
    Aslanova, Natiga Sh
    Jeferli, Esmira, V
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2020, 10 (02): : 175 - 190
  • [24] Optimal stretching for lattice points and eigenvalues
    Laugesen, Richard S.
    Liu, Shiya
    ARKIV FOR MATEMATIK, 2018, 56 (01): : 111 - 145
  • [25] Integer chords and configurations of lattice points
    Huxley, M. N.
    Plunkett, S. M.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (02): : 534 - 545
  • [26] Lattice points below algebraic curves
    Peter, M
    MONATSHEFTE FUR MATHEMATIK, 1996, 121 (04): : 335 - 352
  • [27] Lattice points in large convex bodies
    Müller, W
    MONATSHEFTE FUR MATHEMATIK, 1999, 128 (04): : 315 - 330
  • [28] Visible lattice points along curves
    Liu, Kui
    Meng, Xianchang
    RAMANUJAN JOURNAL, 2021, 56 (03) : 1073 - 1086
  • [29] The Number of Lattice Points and T-Points on a Line in R-2
    Cao, P. H.
    Yuan, L. P.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2014, 38 (01) : 21 - 25
  • [30] CRITICAL BROWNIAN SHEET DOES NOT HAVE DOUBLE POINTS
    Dalang, Robert C.
    Khoshnevisan, Davar
    Nualart, Eulalia
    Wu, Dongsheng
    Xiao, Yimin
    ANNALS OF PROBABILITY, 2012, 40 (04) : 1829 - 1859