On Classical Solutions for A Kuramoto-Sinelshchikov-Velarde-Type Equation

被引:10
|
作者
Coclite, Giuseppe Maria [1 ]
di Ruvo, Lorenzo [2 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Bari 70125, BA, Italy
[2] Univ Bari, Dipartimento Matemat, Bari 70121, BA, Italy
关键词
existence; uniqueness; stability; Kuramoto-Sinelshchikov-Velarde-type equation; Cauchy problem; BENARD-MARANGONI CONVECTION; TRAVELING-WAVE SOLUTIONS; WELL-POSEDNESS; NONLINEAR SATURATION; SIVASHINSKY EQUATION; CONVERGENCE; STABILITY; DIFFUSION; STABILIZATION; INSTABILITY;
D O I
10.3390/a13040077
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Kuramoto-Sinelshchikov-Velarde equation describes the evolution of a phase turbulence in reaction-diffusion systems or the evolution of the plane flame propagation, taking into account the combined influence of diffusion and thermal conduction of the gas on the stability of a plane flame front. In this paper, we prove the well-posedness of the classical solutions for the Cauchy problem.
引用
收藏
页数:22
相关论文
共 50 条