SEPARABILITY OF THE KERNEL FUNCTION IN AN INTEGRAL FORMULATION FOR THE ANISOTROPIC RADIATIVE TRANSFER EQUATION

被引:1
作者
Ren, Kui [1 ]
Zhao, Hongkai [2 ]
Zhong, Yimin [2 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[2] Duke Univ, Dept Math, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
radiative transfer equation; anisotropic scattering; integral formulation; approximate separability; low-rank approximation; fast algorithms; OPTICAL TOMOGRAPHY; ELLIPTIC-OPERATORS; FAST ALGORITHMS; INVERSE PROBLEM; TRANSPORT; MATRIX; SCATTERING; STABILITY;
D O I
10.1137/21M1389717
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an integral formulation for the radiative transfer equation in anisotropic media with truncated approximation to the scattering phase function. The integral formulation consists of a coupled system of integral equations for the angular moments of the transport solution. We analyze the approximate separability of the kernel functions in these integral formulations, deriving asymptotic lower and upper bounds on the number of terms needed in a separable approximation of the kernel functions as the moment grows. Our analysis provides a mathematical understanding of when low-rank approximations to the discretized integral kernels can be used to develop fast numerical algorithms for the corresponding system of integral equations.
引用
收藏
页码:5613 / 5645
页数:33
相关论文
共 59 条
  • [1] Agoshkov V., 2012, Boundary value problems for transport equations
  • [2] [Anonymous], 1988, The rapid evaluation of potential fields in particle systems
  • [3] [Anonymous], 2015, ANAL LINEAR PARTIAL
  • [4] [Anonymous], 1939, ORTHOGONAL POLYNOMIA
  • [5] [Anonymous], 2001, Classics in Applied Mathematics
  • [6] Optical tomography in medical imaging
    Arridge, SR
    [J]. INVERSE PROBLEMS, 1999, 15 (02) : R41 - R93
  • [7] Experimental validation of a transport-based imaging method in highly scattering environments
    Bal, Guillaume
    Carin, Lawrence
    Liu, Dehong
    Ren, Kui
    [J]. INVERSE PROBLEMS, 2007, 23 (06) : 2527 - 2539
  • [8] Transport-based imaging in random media
    Bal, Guillaume
    Ren, Kui
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (06) : 1738 - 1762
  • [9] Inverse transport theory and applications
    Bal, Guillaume
    [J]. INVERSE PROBLEMS, 2009, 25 (05)
  • [10] Bebendorf M, 2005, MATH COMPUT, V74, P1179, DOI 10.1090/S0025-5718-04-01716-8