Structural modification through pressurized sub-Tg annealing of metallic glasses

被引:16
作者
Foroughi, A. [1 ]
Ashuri, H. [1 ]
Tavakoli, R. [1 ]
Stoica, M. [2 ,3 ]
Sopu, D. [4 ,5 ,6 ]
Eckert, J. [6 ,7 ]
机构
[1] Sharif Univ Technol, Dept Mat Sci & Engn, POB 113659466, Tehran, Iran
[2] Swiss Fed Inst Technol, Dept Mat, Lab Met Phys & Technol, Vladimir Prelog Weg 4, CH-8093 Zurich, Switzerland
[3] Politehn Univ Timisoara, Pta Victoriei 2, RO-300006 Timisoara, Romania
[4] IFW Dresden, Inst Complex Mat, Helmholtzstra 20, D-01069 Dresden, Germany
[5] Tech Univ Darmstadt, Inst Mat Sci, Div Mat Modeling, Jovanka Bontschits Str 2, D-64287 Darmstadt, Germany
[6] Austrian Acad Sci, Erich Schmid Inst Mat Sci, Jahnstra 12, A-8700 Leoben, Austria
[7] Univ Leoben, Dept Mat Phys, Jahnstr 12, A-8700 Leoben, Austria
基金
欧洲研究理事会;
关键词
MEDIUM-RANGE ORDER; RELAXATION; TRANSITION; EVOLUTION; BEHAVIOR; VOLUME;
D O I
10.1063/1.5004058
中图分类号
O59 [应用物理学];
学科分类号
摘要
The atomic structure of metallic glasses (MGs) plays an important role in their physical and mechanical properties. Numerous molecular dynamics (MD) simulations have been performed to reveal the structure of MGs at the atomic scale. However, the cooling rates utilized in most of the MD simulations (usually on the order of 10(9)-10(12) K/s) are too high to allow the structure to relax into the actual structures. In this study, we performed long-term pressurized sub-T-g annealing for up to 1 mu s using MD simulation to systematically study the structure evolution of Cu50Zr50 MG. We find that from relaxation to rejuvenation, structural excitation of MGs and transition during sub-T-g annealing depend on the level of hydrostatic pressure. At low hydrostatic pressures, up to 2 GPa in this alloy, the relaxation rate increases with the increasing pressure. The lowest equivalent cooling rate reaches 3.3 x 10(6) K/s in the sample annealed at 2 GPa hydrostatic pressure, which is in the order of the cooling rate in melt spinning experiments. Higher pressures retard the relaxation rate or even rejuvenate the sample. Structural relaxation at low hydrostatic pressure during sub-T-g annealing is governed by short-range atomic rearrangements through annihilation of free volume and anti-free volume defects. In contrast, at high hydrostatic pressures, most of the atoms just experience thermal vibration rather than real atomic jumps. The formation of anti-free volume defects is the main source of structural instability at the high pressure region. Published by AIP Publishing.
引用
收藏
页数:8
相关论文
共 43 条
  • [1] Relaxation in glassforming liquids and amorphous solids
    Angell, CA
    Ngai, KL
    McKenna, GB
    McMillan, PF
    Martin, SW
    [J]. JOURNAL OF APPLIED PHYSICS, 2000, 88 (06) : 3113 - 3157
  • [2] [Anonymous], COMPUTER SIMULATION
  • [3] Local atomic order, electronic structure and electron transport properties of Cu-Zr metallic glasses
    Antonowicz, J.
    Pietnoczka, A.
    Pekala, K.
    Latuch, J.
    Evangelakis, G. A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2014, 115 (20)
  • [4] Atomic Level Structure in Multicomponent Bulk Metallic Glass
    Cheng, Y. Q.
    Ma, E.
    Sheng, H. W.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (24)
  • [5] Atomic-level structure and structure-property relationship in metallic glasses
    Cheng, Y. Q.
    Ma, E.
    [J]. PROGRESS IN MATERIALS SCIENCE, 2011, 56 (04) : 379 - 473
  • [6] LIQUID-GLASS TRANSITION, A FREE-VOLUME APPROACH
    COHEN, MH
    GREST, GS
    [J]. PHYSICAL REVIEW B, 1979, 20 (03): : 1077 - 1098
  • [7] Universal structural parameter to quantitatively predict metallic glass properties
    Ding, Jun
    Cheng, Yong-Qiang
    Sheng, Howard
    Asta, Mark
    Ritchie, Robert O.
    Ma, Evan
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [8] Anomalous structure-property relationships in metallic glasses through pressure-mediated glass formation
    Ding, Jun
    Asta, Mark
    Ritchie, Robert O.
    [J]. PHYSICAL REVIEW B, 2016, 93 (14)
  • [9] Full icosahedra dominate local order in Cu64Zr34 metallic glass and supercooled liquid
    Ding, Jun
    Cheng, Yong-Qiang
    Ma, Evan
    [J]. ACTA MATERIALIA, 2014, 69 : 343 - 354
  • [10] Atomic level stresses
    Egami, T.
    [J]. PROGRESS IN MATERIALS SCIENCE, 2011, 56 (06) : 637 - 653