Sliding mode control for nonlinear stochastic systems with Markovian jumping parameters and mode-dependent time-varying delays

被引:55
作者
Tong, Dongbing [1 ]
Xu, Cong [1 ]
Chen, Qiaoyu [2 ]
Zhou, Wuneng [3 ]
Xu, Yuhua [4 ]
机构
[1] Shanghai Univ Engn Sci, Coll Elect & Elect Engn, Shanghai 201620, Peoples R China
[2] Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai 201620, Peoples R China
[3] Donghua Univ, Coll Informat Sci & Technol, Shanghai 200051, Peoples R China
[4] Nanjing Audit Univ, Sch Finance, Nanjing 211815, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Sliding mode control; Nonlinear stochastic systems; Mode-dependent time-varying delays; Switching surface; Exponential stability; OBSERVER-BASED CONTROL; NEURAL-NETWORKS; EXPONENTIAL SYNCHRONIZATION; INDEPENDENT STABILITY; DESIGN;
D O I
10.1007/s11071-020-05597-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper reports on the sliding mode control (SMC) problem for nonlinear stochastic systems with one features: time-delays are not only varied with time but also characterized by random delays changed in line with a set of Markov chains (namely, time-delays are mode-dependent time-varying delays). Based on given systems, an integral switching surface is introduced. In particular, such a switching surface with an Ito process is given so that the traditional assumption imposed on systems is removed. And by applying the Ito formula, the linear matrix inequalities method and the lemma provided, more relaxed and indeed delay-dependent criteria for the second moment exponential stability are given. Then, the sliding mode controller is constructed to guarantee the reachability of the switching surface and the existence of the sliding mode. Finally, the validity and the application for the presented SMC method are illustrated by the DC motor system.
引用
收藏
页码:1343 / 1358
页数:16
相关论文
共 41 条
[1]   Delay-Independent Stability Conditions for Some Classes of Nonlinear Systems [J].
Aleksandrov, Alexander Yu. ;
Hu, Guang-Da ;
Zhabko, Alexey P. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (08) :2209-2214
[2]  
[Anonymous], 2007, STOCHASTIC SWITCHING
[3]   Robust output feedback control of nonlinear stochastic systems using neural networks [J].
Battilotti, S ;
De Santis, A .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (01) :103-116
[4]   On Delay-Independent Stability of a Class of Nonlinear Positive Time-Delay Systems [J].
Bokharaie, Vahid S. ;
Mason, Oliver .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (07) :1974-1977
[5]   Adaptive Exponential State Estimation for Markovian Jumping Neural Networks with Multi-delays and Levy Noises [J].
Chen, Qiaoyu ;
Tong, Dongbing ;
Zhou, Wuneng ;
Xu, Yuhua .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2019, 38 (07) :3321-3339
[6]   Further Results on Exponential Estimates of Markovian Jump Systems With Mode-Dependent Time-Varying Delays [J].
Gao, Huijun ;
Fei, Zhongyang ;
Lam, James ;
Du, Baozhu .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (01) :223-229
[7]   Universal Fuzzy Integral Sliding-Mode Controllers for Stochastic Nonlinear Systems [J].
Gao, Qing ;
Liu, Lu ;
Feng, Gang ;
Wang, Yong .
IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (12) :2658-2669
[8]   Robust H∞ Control for Stochastic T-S Fuzzy Systems via Integral Sliding-Mode Approach [J].
Gao, Qing ;
Feng, Gang ;
Liu, Lu ;
Qiu, Jianbin ;
Wang, Yong .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (04) :870-881
[9]  
Gu K., 2003, CONTROL ENGN SER BIR
[10]   Robust H∞ Sliding Mode Controller Design of a Class of Time-Delayed Discrete Conic-Type Nonlinear Systems [J].
He, Shuping ;
Lyu, Weizhi ;
Liu, Fei .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (02) :885-892