CLT FOR U-STATISTICS WITH GROWING DIMENSION

被引:4
作者
DiCiccio, Cyrus [1 ]
Romano, Joseph [2 ,3 ]
机构
[1] LinkedIn Corp, 1000 W Maude Ave, Sunnyvale, CA 94085 USA
[2] Stanford Univ, Dept Stat, Sequoia Hall, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Econ, Sequoia Hall, Stanford, CA 94305 USA
关键词
Data splitting; Hodges-Lehmann estimator; hypothesis testing; P-values; subsampling; U-statistics;
D O I
10.5705/ss.202020.0048
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a general triangular array central limit theorem for U-statistics, where the kernel h(k) (x(1), ..., x(k)) and its dimension k may increase with the sample size. Motivating examples that require such a general result are presented, including a class of Hodges-Lehmann estimators, subsampling estimators, and combining p-values using data splitting. A result for the so-called M-statistic is also presented, which is defined as the median of some kernel computed over all subsets of the data of a given size. The conditions in the theorems are verified in the motivating examples as well.
引用
收藏
页码:323 / 344
页数:22
相关论文
共 16 条
  • [1] [Anonymous], 2022, Testing Statistical Hypotheses, DOI [10.1007/978-3-030-70578-7, DOI 10.1007/978-3-030-70578-7]
  • [2] GLOBAL TESTING UNDER SPARSE ALTERNATIVES: ANOVA, MULTIPLE COMPARISONS AND THE HIGHER CRITICISM
    Arias-Castro, Ery
    Candes, Emmanuel J.
    Plan, Yaniv
    [J]. ANNALS OF STATISTICS, 2011, 39 (05) : 2533 - 2556
  • [3] Normal approximation for nonlinear statistics using a concentration inequality approach
    Chen, Louis H. Y.
    Shao, Qi-Man
    [J]. BERNOULLI, 2007, 13 (02) : 581 - 599
  • [4] Exact tests via multiple data splitting
    DiCiccio, Cyrus J.
    DiCiccio, Thomas J.
    Romano, Joseph P.
    [J]. STATISTICS & PROBABILITY LETTERS, 2020, 166
  • [5] A CLASS OF STATISTICS WITH ASYMPTOTICALLY NORMAL DISTRIBUTION
    HOEFFDING, W
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1948, 19 (03): : 293 - 325
  • [6] p-Values for High-Dimensional Regression
    Meinshausen, Nicolai
    Meier, Lukas
    Buehlmann, Peter
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (488) : 1671 - 1681
  • [7] Mentch L.., 2019, ARXIV PREPRINT ARXIV
  • [8] Mentch L, 2016, J MACH LEARN RES, V17
  • [9] Politis D. N., 1999, Subsampling
  • [10] ON THE UNIFORM ASYMPTOTIC VALIDITY OF SUBSAMPLING AND THE BOOTSTRAP
    Romano, Joseph P.
    Shaikh, Azeem M.
    [J]. ANNALS OF STATISTICS, 2012, 40 (06) : 2798 - 2822