Programming Surface-Enhanced Raman Scattering of DNA Origami-templated Metamolecules

被引:42
|
作者
Zhou, Chunyang [1 ]
Yang, Yanjun [2 ,3 ]
Li, Haofei [1 ]
Gao, Fei [1 ]
Song, Chunyuan [2 ,3 ]
Yang, Donglei [1 ]
Xu, Fan [1 ]
Liu, Na [4 ,5 ,6 ]
Ke, Yonggang [7 ,8 ,9 ]
Su, Shao [2 ,3 ]
Wang, Pengfei [1 ]
机构
[1] Shanghai Jiao Tong Univ, Renji Hosp, Shanghai Key Lab Nucle Acid Chem & Nanomed,Sch Me, State Key Lab Oncogenes & Related Genes,Inst Mol, Shanghai 200127, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Natl Synerget Innovat Ctr Adv Mat SICAM, Key Lab Organ Elect & Informat Displays KLOEID, Nanjing 210023, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Natl Synerget Innovat Ctr Adv Mat SICAM, Jiangsu Key Lab Biosensors, IAM, Nanjing 210023, Peoples R China
[4] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany
[5] Heidelberg Univ, Ctr Adv Mat, D-69120 Heidelberg, Germany
[6] Max Planck Inst Intelligent Syst, D-70569 Stuttgart, Germany
[7] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30322 USA
[8] Emory Univ, Atlanta, GA 30322 USA
[9] Emory Univ, Dept Chem, Atlanta, GA 30322 USA
基金
中国国家自然科学基金;
关键词
surface-enhanced Raman scattering; DNA origami; metamolecules; bottom-up assembly; metallic nanoparticles; NANOPARTICLE DIMERS; FOLDING DNA; ARCHITECTURES;
D O I
10.1021/acs.nanolett.9b05161
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
DNA origami holds an unprecedented capability on assembling metallic nanoparticles into designer plasmonic metamolecules of emerging properties, including surface-enhanced Raman scattering (SERS). SERS metamolecules were produced by positioning nanoparticles in close proximity to each other on a DNA origami template for Raman enhancement. In earlier reports, SERS metamolecules were generally assembled into clusters containing small number of nanoparticles (2, 3, or 4) and thus had limited programmability over SERS. Herein, we expanded the structural complexity of SERS metamolecules by increasing the number of nanoparticles and by arranging them into sophisticated configurations. DNA origami hexagon tile was used as the assembling template to fabricate clusters consisting of 6, 7, 12, 18, and 30+ metallic nanoparticles. Programmable SERS was realized via controlling the size, number, or spatial arrangement of nanoparticles. We believe this method offers a general platform for fabricating sophisticated nanodevices with programmable SERS that may be applied to a variety of fields including plasmonics, nanophotonics, and sensing.
引用
收藏
页码:3155 / 3159
页数:5
相关论文
共 50 条
  • [21] Surface-Enhanced Raman Scattering in Molecular Junctions
    Iwane, Madoka
    Fujii, Shintaro
    Kiguchi, Manabu
    SENSORS, 2017, 17 (08):
  • [22] Quantitative Biosensing by Surface-Enhanced Raman Scattering
    Al Mamun, Md. Abdullah
    Cole, Nerida A.
    Juodkazis, Saulius
    Stoddart, Paul R.
    BIOPHOTONICS AUSTRALASIA 2019, 2019, 11202
  • [23] Surface-Enhanced Raman Scattering of Rat Tissues
    Aydin, Oemer
    Kahraman, Mehmet
    Kilic, Ertugrul
    Culha, Mustafa
    APPLIED SPECTROSCOPY, 2009, 63 (06) : 662 - 668
  • [24] Present and Future of Surface-Enhanced Raman Scattering
    Langer, Judith
    de Aberasturi, Dorleta Jimenez
    Aizpurua, Javier
    Alvarez-Puebla, Ramon A.
    Auguie, Baptiste
    Baumberg, Jeremy J.
    Bazan, Guillermo C.
    Bell, Steven E. J.
    Boisen, Anja
    Brolo, Alexandre G.
    Choo, Jaebum
    Cialla-May, Dana
    Deckert, Volker
    Fabris, Laura
    Faulds, Karen
    de Abajo, F. Javier Garcia
    Goodacre, Royston
    Graham, Duncan
    Haes, Amanda J.
    Haynes, Christy L.
    Huck, Christian
    Itoh, Tamitake
    Ka, Mikael
    Kneipp, Janina
    Kotov, Nicholas A.
    Kuang, Hua
    Le Ru, Eric C.
    Lee, Hiang Kwee
    Li, Jian-Feng
    Ling, Xing Yi
    Maier, Stefan A.
    Mayerhofer, Thomas
    Moskovits, Martin
    Murakoshi, Kei
    Nam, Jwa-Min
    Nie, Shuming
    Ozaki, Yukihiro
    Pastoriza-Santos, Isabel
    Perez-Juste, Jorge
    Popp, Juergen
    Pucci, Annemarie
    Reich, Stephanie
    Ren, Bin
    Schatz, George C.
    Shegai, Timur
    Schlucker, Sebastian
    Tay, Li-Lin
    Thomas, K. George
    Tian, Zhong-Qun
    Van Duyne, Richard P.
    ACS NANO, 2020, 14 (01) : 28 - 117
  • [25] A silver solution for surface-enhanced Raman scattering
    Li, YS
    Cheng, JC
    Coons, LB
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1999, 55 (06) : 1197 - 1207
  • [26] Surface-enhanced Raman scattering molecular nanoprobes
    Wabuyele, MB
    Yan, F
    Griffin, GD
    Vo-Dinh, T
    Advanced Biomedical and Clinical Diagnostic Systems III, 2005, 5692 : 209 - 215
  • [27] Surface-enhanced Raman scattering of protoberberine alkaloids
    Canamares, M. V.
    Lombardi, J. R.
    Leona, M.
    JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (12) : 1907 - 1914
  • [28] Surface-enhanced Raman scattering by semiconductor nanostructures
    Milekhin A.G.
    Sveshnikova L.L.
    Duda T.A.
    Yeryukov N.A.
    Surovtsev N.V.
    Adichtchev S.V.
    Rodyakina E.E.
    Gutakovskii A.K.
    Latyshev A.V.
    Zahn D.R.T.
    Optoelectronics, Instrumentation and Data Processing, 2013, 49 (05) : 504 - 513
  • [29] A Conceptual Overview of Surface-Enhanced Raman Scattering (SERS)
    Magdy, Mina
    PLASMONICS, 2023, 18 (02) : 803 - 809
  • [30] Surface-enhanced Raman scattering spectroscopy of sialosides and their derivatives
    Feofanov, AV
    Oleinikov, VA
    Tuzikov, AB
    Ianoul, AI
    Kryukov, EY
    Sokolov, KV
    Bovin, NV
    Nabiev, IR
    BIOORGANICHESKAYA KHIMIYA, 1996, 22 (09): : 706 - 716