ON THE BREZIS-NIRENBERG PROBLEM IN A BALL

被引:0
作者
Chen, Zhijie [1 ]
Zou, Wenming [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
LINEAR ELLIPTIC-EQUATIONS; MULTIPLE SOLUTIONS; POSITIVE SOLUTIONS; UNIQUENESS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following Brezis-Nirenberg type critical exponent problem: {-Delta u = lambda u(q) + u(2)*(-1) in B-R, u > 0 in B-R, u = 0 on partial derivative B-R, where B-R is a ball with radius R in R-N (N >= 3), lambda > 0, 1 <= q < 2* - 1, and 2* is the critical Sobolev exponent. We prove the uniqueness results of the least-energy solution when 3 <= N <= 5 and 1 <= q < 2* - 1. We give extremely accurate energy estimates of the least-energy solutions as R -> 0 for N >= 4 and q = 1.
引用
收藏
页码:527 / 542
页数:16
相关论文
共 21 条