Integrated Approach in Genomic Selection to Accelerate Genetic Gain in Sugarcane

被引:11
|
作者
Sandhu, Karansher Singh [1 ]
Shiv, Aalok [2 ]
Kaur, Gurleen [3 ]
Meena, Mintu Ram [4 ]
Raja, Arun Kumar [5 ]
Vengavasi, Krishnapriya [5 ]
Mall, Ashutosh Kumar [2 ]
Kumar, Sanjeev [2 ]
Singh, Praveen Kumar [2 ]
Singh, Jyotsnendra [2 ]
Hemaprabha, Govind [6 ]
Pathak, Ashwini Dutt [2 ]
Krishnappa, Gopalareddy [6 ]
Kumar, Sanjeev [2 ]
机构
[1] Washington State Univ, Dept Crop & Soil Sci, Pullman, WA 99163 USA
[2] ICAR Indian Inst Sugarcane Res, Div Crop Improvement, Lucknow 226002, Uttar Pradesh, India
[3] Univ Florida, Dept Hort Sci, Gainesville, FL 32611 USA
[4] ICAR Sugarcane Breeding Inst, Reg Ctr, Karnal 132001, India
[5] ICAR Sugarcane Breeding Inst, Div Crop Prod, Coimbatore 641007, Tamil Nadu, India
[6] ICAR Sugarcane Breeding Inst, Div Crop Improvement, Coimbatore 641007, Tamil Nadu, India
来源
PLANTS-BASEL | 2022年 / 11卷 / 16期
关键词
genomic selection; prediction models; GEBV; genomic accuracy; sugarcane; breeding; high-throughput phenotyping; high-throughput genotyping; machine learning; speed breeding; MARKER-ASSISTED SELECTION; LEAF WATER-CONTENT; ENABLED PREDICTION; GENOMEWIDE SELECTION; QUANTITATIVE TRAITS; CANOPY TEMPERATURE; UNIT TIME; RESISTANCE; ACCURACY; VALUES;
D O I
10.3390/plants11162139
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Marker-assisted selection (MAS) has been widely used in the last few decades in plant breeding programs for the mapping and introgression of genes for economically important traits, which has enabled the development of a number of superior cultivars in different crops. In sugarcane, which is the most important source for sugar and bioethanol, marker development work was initiated long ago; however, marker-assisted breeding in sugarcane has been lagging, mainly due to its large complex genome, high levels of polyploidy and heterozygosity, varied number of chromosomes, and use of low/medium-density markers. Genomic selection (GS) is a proven technology in animal breeding and has recently been incorporated in plant breeding programs. GS is a potential tool for the rapid selection of superior genotypes and accelerating breeding cycle. However, its full potential could be realized by an integrated approach combining high-throughput phenotyping, genotyping, machine learning, and speed breeding with genomic selection. For better understanding of GS integration, we comprehensively discuss the concept of genetic gain through the breeder's equation, GS methodology, prediction models, current status of GS in sugarcane, challenges of prediction accuracy, challenges of GS in sugarcane, integrated GS, high-throughput phenotyping (HTP), high-throughput genotyping (HTG), machine learning, and speed breeding followed by its prospective applications in sugarcane improvement.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Genomic selection improves genetic gain for fiber traits in a breeding program for alpacas
    Cruz, Alan
    Sedano, Jorge
    Burgos, Alonso
    Gutierrez, Juan Pablo
    Wurzinger, Maria
    Gutierrez-Reynoso, Gustavo
    LIVESTOCK SCIENCE, 2023, 270
  • [22] Potential benefits of genomic selection on genetic gain of small ruminant breeding programs
    Shumbusho, F.
    Raoul, J.
    Astruc, J. M.
    Palhiere, I.
    Elsen, J. M.
    JOURNAL OF ANIMAL SCIENCE, 2013, 91 (08) : 3644 - 3657
  • [23] Genomic selection and genetic gain for nut yield in an Australian macadamia breeding population
    Katie M. O’Connor
    Ben J. Hayes
    Craig M. Hardner
    Mobashwer Alam
    Robert J. Henry
    Bruce L. Topp
    BMC Genomics, 22
  • [24] Simulating deployment of genetic gain in a radiata pine breeding program with genomic selection
    Duncan McLean
    Luis Apiolaza
    Mark Paget
    Jaroslav Klápště
    Tree Genetics & Genomes, 2023, 19
  • [25] Experimental assessment of the accuracy of genomic selection in sugarcane
    M. Gouy
    Y. Rousselle
    D. Bastianelli
    P. Lecomte
    L. Bonnal
    D. Roques
    J.-C. Efile
    S. Rocher
    J. Daugrois
    L. Toubi
    S. Nabeneza
    C. Hervouet
    H. Telismart
    M. Denis
    A. Thong-Chane
    J. C. Glaszmann
    J.-Y Hoarau
    S. Nibouche
    L. Costet
    Theoretical and Applied Genetics, 2013, 126 : 2575 - 2586
  • [26] Experimental assessment of the accuracy of genomic selection in sugarcane
    Gouy, M.
    Rousselle, Y.
    Bastianelli, D.
    Lecomte, P.
    Bonnal, L.
    Roques, D.
    Efile, J. -C.
    Rocher, S.
    Daugrois, J.
    Toubi, L.
    Nabeneza, S.
    Hervouet, C.
    Telismart, H.
    Denis, M.
    Thong-Chane, A.
    Glaszmann, J. C.
    Hoarau, J. -Y
    Nibouche, S.
    Costet, L.
    THEORETICAL AND APPLIED GENETICS, 2013, 126 (10) : 2575 - 2586
  • [27] Selection on Expected Maximum Haploid Breeding Values Can Increase Genetic Gain in Recurrent Genomic Selection
    Mueller, Dominik
    Schopp, Pascal
    Melchinger, Albrecht E.
    G3-GENES GENOMES GENETICS, 2018, 8 (04): : 1173 - 1181
  • [28] Genomic selection helps accelerate popcorn population breeding
    Schwantes, Ismael Albino
    do Amaral Junior, Antonio Teixeira
    de Almeida Filho, Janeo Eustaquio
    Vivas, Marcelo
    Silva Cabral, Pablo Diego
    Goncalves Guimaraes, Amanda
    de Lima e Silva, Fernando Higino
    Araujo Diniz Santos, Pedro Henrique
    Gonzaga Pereira, Messias
    Pio Viana, Alexandre
    Ferreira Pena, Guilherme
    Alves Ferreira, Fernando Rafael
    CROP SCIENCE, 2020, 60 (03) : 1373 - 1385
  • [29] Genomic selection can accelerate the biofortification of spring wheat
    Reem Joukhadar
    Rebecca Thistlethwaite
    Richard M. Trethowan
    Matthew J. Hayden
    James Stangoulis
    Suong Cu
    Hans D. Daetwyler
    Theoretical and Applied Genetics, 2021, 134 : 3339 - 3350
  • [30] Genomic selection can accelerate the biofortification of spring wheat
    Joukhadar, Reem
    Thistlethwaite, Rebecca
    Trethowan, Richard M.
    Hayden, Matthew J.
    Stangoulis, James
    Cu, Suong
    Daetwyler, Hans D.
    THEORETICAL AND APPLIED GENETICS, 2021, 134 (10) : 3339 - 3350