Enhancement of Thermoelectric Performance in CuSbSe2 Nanoplate-Based Pellets by Texture Engineering and Carrier Concentration Optimization

被引:26
作者
Luo, Yubo [1 ,2 ]
Du, Chengfeng [1 ]
Liang, Qinghua [1 ]
Zheng, Yun [3 ]
Zhu, Beibei [1 ]
Hu, Huanlong [4 ]
Khor, Khiam Aik [4 ]
Xu, Jianwei [3 ]
Yan, Qingyu [1 ]
Kanatzidis, Mercouri G. [2 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA
[3] ASTAR, Inst Mat Res & Engn, Innovis, 2 Fusionopolis Way, Singapore 138634, Singapore
[4] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
carrier concentration; CuSbSe2; nanoplate; texture; thermoelectric; LONE-PAIR ELECTRONS; THERMAL-CONDUCTIVITY; POWER-FACTOR; SE; CHALCOSTIBITE; FIELD; SB;
D O I
10.1002/smll.201803092
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work reports the thermoelectric properties of the CuSbSe2-x mol% PtTe2 (x = 0, 0.5, 1.0, 1.5, and 2.0) pellets composed of highly oriented single crystalline nanoplates. CuSbSe2-PtTe2 single crystalline nanoplates are prepared by a wet-chemical process, and the pellets are prepared through a bottom-up self-assembly of the CuSbSe2-PtTe2 nanoplates and spark plasma sintering (SPS) process. X-ray diffraction and field emission scanning electron microscopic analyses show a highly textured nature with an orientation factor of approximate to 0.8 for (00l) facets along the primary surface of the pellets (in-plane, perpendicular to the SPS pressure). By this way, bulk-single-crystal-like electrical and thermal transport properties with a strong anisotropy are obtained, which results in an effective optimization on thermoelectric performance. The maximum in-plane thermoelectric figure-of-merit ZT value reaches 0.50 at 673 K for CuSbSe2-2.0 mol% PtTe2 pellet, which is about five times higher than the in-plane ZT (0.10) for pure CuSbSe2.
引用
收藏
页数:9
相关论文
共 37 条
[1]   Role of interlayer coupling for the power factor of CuSbS2 and CuSbSe2 [J].
Alsaleh, Najebah M. ;
Singh, Nirpendra ;
Schwingenschlogl, Udo .
PHYSICAL REVIEW B, 2016, 94 (12)
[2]   Pressure induced structural transitions in CuSbS2 and CuSbSe2 thermoelectric compounds [J].
Baker, Jason ;
Kumar, Ravhi S. ;
Sneed, Daniel ;
Connolly, Anthony ;
Zhang, Yi ;
Velisavljevic, Nenad ;
Paladugu, Jayalakshmi ;
Pravica, Michael ;
Chen, Changfeng ;
Cornelius, Andrew ;
Zhao, Yusheng .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 643 :186-194
[3]   Anharmoncity and low thermal conductivity in thermoelectrics [J].
Chang, Cheng ;
Zhao, Li-Dong .
MATERIALS TODAY PHYSICS, 2018, 4 :50-57
[4]   The impact of lone-pair electrons on the lattice thermal conductivity of the thermoelectric compound CuSbS2 [J].
Du, Baoli ;
Zhang, Ruizhi ;
Chen, Kan ;
Mahajan, Amit ;
Reece, Mike J. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (07) :3249-3259
[5]   2D Chalcogenide Nanoplate Assemblies for Thermoelectric Applications [J].
Dun, Chaochao ;
Hewitt, Corey A. ;
Li, Qi ;
Xu, Junwei ;
Schall, Drew C. ;
Lee, Hyunsu ;
Jiang, Qike ;
Carroll, David. L. .
ADVANCED MATERIALS, 2017, 29 (21)
[6]   Promising thermoelectric performance in n-type AgBiSe2: effect of aliovalent anion doping [J].
Guin, Satya N. ;
Srihari, Velaga ;
Biswas, Kanishka .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (02) :648-655
[7]   Computational Prediction of High Thermoelectric Performance in Hole Doped Layered GeSe [J].
Hao, Shiqiang ;
Shi, Fengyuan ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. ;
Wolverton, Christopher .
CHEMISTRY OF MATERIALS, 2016, 28 (09) :3218-3226
[8]   Advances in thermoelectric materials research: Looking back and moving forward [J].
He, Jian ;
Tritt, Terry M. .
SCIENCE, 2017, 357 (6358)
[9]  
Jana M. K., 2016, ANGEW CHEM, V128, P7923, DOI DOI 10.1002/ANGE.201511737
[10]   Characterization of Lorenz number with Seebeck coefficient measurement [J].
Kim, Hyun-Sik ;
Gibbs, Zachary M. ;
Tang, Yinglu ;
Wang, Heng ;
Snyder, G. Jeffrey .
APL MATERIALS, 2015, 3 (04)