Photoinduced Ligand Release from a Silicon Phthalocyanine Dye Conjugated with Monoclonal Antibodies: A Mechanism of Cancer Cell Cytotoxicity after Near-Infrared Photoimmunotherapy

被引:201
作者
Sato, Kazuhide [1 ,2 ,3 ]
Ando, Kanta [4 ]
Okuyama, Shuhei [1 ,5 ]
Moriguchi, Shiho [5 ]
Ogura, Tairo [5 ]
Totoki, Shinichiro [5 ]
Hanaoka, Hirofumi [1 ]
Nagaya, Tadanobu [1 ]
Kokawa, Ryohei [5 ]
Takakura, Hideo [4 ]
Nishimura, Masayuki [5 ]
Hasegawa, Yoshinori [3 ]
Choyke, Peter L. [1 ]
Ogawa, Mikako [4 ]
Kobayashi, Hisataka [1 ]
机构
[1] NCI, Mol Imaging Program, Ctr Canc Res, NIH, Bethesda, MD 20892 USA
[2] Nagoya Univ, Inst Adv Res, Nagoya, Aichi 4640814, Japan
[3] Nagoya Univ, Grad Sch Med, Dept Resp Med, Nagoya, Aichi 4668550, Japan
[4] Hokkaido Univ, Grad Sch Pharmaceut Sci, Lab Bioanal & Mol Imaging, Sapporo, Hokkaido 0600812, Japan
[5] Shimadzu Co Ltd, Kyoto 6048511, Japan
基金
日本科学技术振兴机构; 美国国家卫生研究院;
关键词
PHOTODYNAMIC THERAPY; IN-VIVO; ELIMINATION;
D O I
10.1021/acscentsci.8b00565
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photochemical reactions can dramatically alter physical characteristics of reacted molecules. In this study, we demonstrate that near-infrared (NIR) light induces an axial ligand-releasing reaction, which dramatically alters hydrophilicity of a silicon phthalocyanine derivative (IR700) dye leading to a change in the shape of the conjugate and its propensity to aggregate in aqueous solution. This photochemical reaction is proposed as a major mechanism of cell death induced by NIR photoimmunotherapy (NIR-PIT), which was recently developed as a molecularly targeted cancer therapy. Once the antibody-IR700 conjugate is bound to its target, activation by NIR light causes physical changes in the shape of antibody antigen complexes that are thought to induce physical stress within the cellular membrane leading to increases in transmembrane water flow that eventually lead to cell bursting and necrotic cell death.
引用
收藏
页码:1559 / 1569
页数:11
相关论文
共 24 条
[1]   Photodynamic Therapy of Cancer: An Update [J].
Agostinis, Patrizia ;
Berg, Kristian ;
Cengel, Keith A. ;
Foster, Thomas H. ;
Girotti, Albert W. ;
Gollnick, Sandra O. ;
Hahn, Stephen M. ;
Hamblin, Michael R. ;
Juzeniene, Asta ;
Kessel, David ;
Korbelik, Mladen ;
Moan, Johan ;
Mroz, Pawel ;
Nowis, Dominika ;
Piette, Jacques ;
Wilson, Brian C. ;
Golab, Jakub .
CA-A CANCER JOURNAL FOR CLINICIANS, 2011, 61 (04) :250-281
[2]   Defining the conditional basis of silicon phthalocyanine near-IR ligand exchange [J].
Anderson, Erin D. ;
Sova, Stacey ;
Ivanic, Joseph ;
Kelly, Lisa ;
Schnermann, Martin J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (28) :19030-19036
[3]   Near-infrared uncaging or photosensitizing dictated by oxygen tension [J].
Anderson, Erin D. ;
Gorka, Alexander P. ;
Schnermann, Martin J. .
NATURE COMMUNICATIONS, 2016, 7
[4]  
[Anonymous], 2016, SCI REP
[5]   Synthesis and photophysical properties of silicon phthalocyanines with axial siloxy ligands bearing alkylamine termini [J].
Anula, HM ;
Berlin, JC ;
Wu, HQ ;
Li, YS ;
Peng, XZ ;
Kenney, ME ;
Rodgers, MAJ .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (15) :5215-5223
[6]   The present and future role of photodynamic therapy in cancer treatment [J].
Brown, SB ;
Brown, EA ;
Walker, I .
LANCET ONCOLOGY, 2004, 5 (08) :497-508
[7]   Photodynamic therapy and anti-tumour immunity [J].
Castano, Ana P. ;
Mroz, Pawel ;
Hamblin, Michael R. .
NATURE REVIEWS CANCER, 2006, 6 (07) :535-545
[8]   SILICON PHTHALOCYANINE-SILOXANE POLYMERS - SYNTHESIS AND H-1 NUCLEAR MAGNETIC-RESONANCE STUDY [J].
DAVISON, JB ;
WYNNE, KJ .
MACROMOLECULES, 1978, 11 (01) :186-191
[9]  
Ido S, 2014, NAT MATER, V13, P265, DOI [10.1038/nmat3847, 10.1038/NMAT3847]
[10]   Imaging and Selective Elimination of Glioblastoma Stem Cells with Theranostic Near-Infrared-Labeled CD133-Specific Antibodies [J].
Jing, Hua ;
Weidensteiner, Claudia ;
Reichardt, Wilfried ;
Gaedicke, Simone ;
Zhu, Xuekai ;
Grosu, Anca-Ligia ;
Kobayashi, Hisataka ;
Niedermann, Gabriele .
THERANOSTICS, 2016, 6 (06) :862-874