On the metric dimension of bilinear forms graphs

被引:29
作者
Feng, Min [1 ]
Wang, Kaishun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci & Lab Math Com Sys, Beijing 100875, Peoples R China
关键词
Metric dimension; Resolving set; Bilinear forms graph;
D O I
10.1016/j.disc.2011.11.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [R.F. Bailey, K. Meagher, On the metric dimension of Grassmann graphs, arXiv:1010.4495]. Bailey and Meagher obtained an upper bound on the metric dimension of Grassmann graphs. In this note we show that q(n+d-1+[d+1/n]) is an upper bound on the metric dimension of bilinear forms graphs H-q(n, d) when n >= d >= 2. As a result, we obtain an improvement on Babai's most general bound for the metric dimension of distance-regular graphs, in the case of H-q(n, d) with n >= d >= 4. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1266 / 1268
页数:3
相关论文
共 9 条
[1]   ON THE ORDER OF UNIPRIMITIVE PERMUTATION-GROUPS [J].
BABAI, L .
ANNALS OF MATHEMATICS, 1981, 113 (03) :553-568
[2]  
Bailey R., ARXIV10104495
[3]   Base size, metric dimension and other invariants of groups and graphs [J].
Bailey, Robert F. ;
Cameron, Peter J. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :209-242
[4]   PARTITIONS OF FINITE VECTOR-SPACES - APPLICATION OF FROBENIUS NUMBER IN GEOMETRY [J].
BEUTELSPACHER, A .
ARCHIV DER MATHEMATIK, 1978, 31 (02) :202-208
[5]  
Brouwer A.E., 1989, DISTANCE REGULAR GRA
[6]   On the metric dimension of cartesian products of graphs [J].
Caceres, Jose ;
Hernando, Carmen ;
Mora, Merce ;
Pelayo, Ignacio M. ;
Puertas, Maria L. ;
Seara, Carlos ;
Wood, David R. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (02) :423-441
[7]  
Harary F., 1977, ARS COMBINATORIA, V4, P318
[8]  
Harary F., 1976, ARS COMBINATORIA, V2, P191, DOI DOI 10.1016/J.DAM.2012.10.018
[9]  
Slater P.J., 1975, C NUMER, V14, P549, DOI DOI 10.1002/NET.3230170105