On the Periodic Solutions for the Perturbed Spatial Quantized Hill Problem

被引:13
作者
Abouelmagd, Elbaz I. [1 ]
Alhowaity, Sawsan [2 ]
Diab, Zouhair [3 ]
Guirao, Juan L. G. [4 ,5 ,6 ]
Shehata, Mahmoud H. [1 ]
机构
[1] Natl Res Inst Astron & Geophys NRIAG, Astron Dept, Celestial Mech & Space Dynam Res Grp CMSDRG, Cairo 11421, Egypt
[2] Shaqra Univ, Coll Sci & Humanities, Dept Math, Shaqra 15551, Saudi Arabia
[3] Larbi Tebessi Univ, Dept Math & Comp Sci, Tebessa 12002, Algeria
[4] Univ Politecn Cartagena, Dept Matemaca Aplicada & Estadist, Cartagena 30202, Spain
[5] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[6] Tomsk State Univ Control Syst & Radioelect TUSUR, Int Ctr Grav & Cosmos, Lab Theoret Cosmol, Tomsk 634050, Russia
基金
中国国家自然科学基金;
关键词
quantized Hill problem; averaging theory; periodic solution; EQUILIBRIUM POINTS; BODY PROBLEM; EXISTENCE; ORBITS;
D O I
10.3390/math10040614
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we investigated the differences and similarities among some perturbation approaches, such as the classical perturbation theory, Poincare-Lindstedt technique, multiple scales method, the KB averaging method, and averaging theory. The necessary conditions to construct the periodic solutions for the spatial quantized Hill problem-in this context, the periodic solutions emerging from the equilibrium points for the spatial Hill problem-were evaluated by using the averaging theory, under the perturbation effect of quantum corrections. This model can be used to develop a Lunar theory and the families of periodic orbits in the frame work for the spatial quantized Hill problem. Thereby, these applications serve to reinforce the obtained results on these periodic solutions and gain its own significance.
引用
收藏
页数:17
相关论文
共 35 条
[1]   A Quantized Hill's Dynamical System [J].
Abouelmagd, Elbaz I. ;
Kalantonis, Vassilis S. ;
Perdiou, Angela E. .
ADVANCES IN ASTRONOMY, 2021, 2021
[2]   On Robe's restricted problem with a modified Newtonian potential [J].
Abouelmagd, Elbaz I. ;
Ansari, Abdullah A. ;
Shehata, M. H. .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (01)
[3]   PERIODIC ORBITS FOR THE PERTURBED PLANAR CIRCULAR RESTRICTED 3-BODY PROBLEM [J].
Abouelmagd, Elbaz, I ;
Garcia Guirao, Juan Luis ;
Libre, Jaume L. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (03) :1007-1020
[4]   Periodic Solution of the Two-Body Problem by KB Averaging Method Within Frame of the Modified Newtonian Potential [J].
Abouelmagd, Elbaz I. .
JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2018, 65 (03) :291-306
[5]   Periodic Orbits of the Planar Anisotropic Kepler Problem [J].
Abouelmagd, Elbaz I. ;
Llibre, Jaume ;
Garcia Guirao, Juan Luis .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (03)
[6]   Analysis of the spatial quantized three-body problem [J].
Alshaery, A. A. ;
Abouelmagd, Elbaz, I .
RESULTS IN PHYSICS, 2020, 17
[7]  
Bogoliubov NN., 1961, Asymptotic Methods in the Theory of Nonlinear Oscillations
[8]  
Celletti A, 2010, STABILITY AND CHAOS IN CELESTIAL MECHANICS, P1, DOI 10.1007/978-3-540-85146-2
[9]  
COOKE KL, 1991, LECT NOTES MATH, V1475, P1
[10]   S-TYPE AND P-TYPE HABITABILITY IN STELLAR BINARY SYSTEMS: A COMPREHENSIVE APPROACH. I. METHOD AND APPLICATIONS [J].
Cuntz, M. .
ASTROPHYSICAL JOURNAL, 2014, 780 (01)