Partitions and clifford algebras

被引:9
作者
Schott, Rene [1 ,2 ]
Staples, G. Stacey [3 ]
机构
[1] Univ Nancy 1, IECN, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Nancy 1, LORIA, F-54506 Vandoeuvre Les Nancy, France
[3] So Illinois Univ, Dept Math & Stat, Edwardsville, IL 62026 USA
关键词
D O I
10.1016/j.ejc.2007.07.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given the set [n] = {1, ... , n} for positive integer n, combinatorial properties of Clifford algebras are exploited to count partitions and non-overlapping partitions of [n]. The result is recovery of Stirling numbers of the second kind, Bell numbers, and Bessel numbers. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1133 / 1138
页数:6
相关论文
共 6 条
[1]  
[Anonymous], 1995, CAMBRIDGE STUDIES AD
[2]  
Berezin FA., 1966, METHOD 2 QUANTIZATIO
[3]   NONOVERLAPPING PARTITIONS, CONTINUED FRACTIONS, BESSEL-FUNCTIONS AND A DIVERGENT SERIES [J].
FLAJOLET, P ;
SCHOTT, R .
EUROPEAN JOURNAL OF COMBINATORICS, 1990, 11 (05) :421-432
[4]  
Lounesto P, 2001, CLIFFORD ALGEBRAS SP
[5]  
STAPLES GS, 2005, PREPUBLICATION I E C, V37
[6]  
STAPLES GS, 2005, ADV APPL CLIFFORD AL, V15, P213