6D object pose estimation via viewpoint relation reasoning

被引:16
|
作者
Zhao, Wanqing [1 ]
Zhang, Shaobo [1 ]
Guan, Ziyu [1 ]
Luo, Hangzai [1 ]
Tang, Lei [2 ]
Peng, Jinye [1 ]
Fan, Jianping [3 ]
机构
[1] Northwestern Univ, Sch Informat & Technol, Xian, Shaanxi, Peoples R China
[2] Xian Microelect Technol Inst, Xian, Shaanxi, Peoples R China
[3] UNC Charlotte, Dept Comp Sci, Charlotte, NC USA
基金
国家重点研发计划; 美国国家科学基金会;
关键词
6D object pose estimation; Keypoints detection; Convolutional neural networks; Geometric reasoning;
D O I
10.1016/j.neucom.2019.12.108
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Estimating the 6D object pose is a very challenging task in computer vision. The main difficulty is mapping the object from RGB images to 3D space. In this paper, we present a novel two-stage method for estimating the 6D object pose by using the 2D keypoints of an object and its 2D bounding box. There are two stages in our method. The first stage detects the 2D keypoints and 2D bounding boxes of objects by a stable end-to-end framework. During the training phase, this framework uses viewpoint transformation information and object saliency regions to learn geometrically and semantically consistent keypoints. Then the 6D poses of objects are calculated by a series of geometric reasoning algorithms in the second stage. Experiments show that our method achieves accurate pose estimation and robust to occluded and cluttered scenes. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:9 / 17
页数:9
相关论文
共 50 条
  • [1] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [2] OVE6D: Object Viewpoint Encoding for Depth-based 6D Object Pose Estimation
    Cai, Dingding
    Heikkia, Janne
    Rahtu, Esa
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6793 - 6803
  • [3] Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Huber, Marco F.
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6239 - 6245
  • [4] BOP: Benchmark for 6D Object Pose Estimation
    Hodan, Tomas
    Michel, Frank
    Brachmann, Eric
    Kehl, Wadim
    Buch, Anders Glent
    Kraft, Dirk
    Drost, Bertram
    Vidal, Joel
    Ihrke, Stephan
    Zabulis, Xenophon
    Sahin, Caner
    Manhardt, Fabian
    Tombari, Federico
    Kim, Tae-Kyun
    Matas, Jiri
    Rother, Carsten
    COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 19 - 35
  • [5] Survey on 6D Pose Estimation of Rigid Object
    Chen, Jiale
    Zhang, Lijun
    Liu, Yi
    Xu, Chi
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7440 - 7445
  • [6] Category-Level 6D Object Pose Estimation With Structure Encoder and Reasoning Attention
    Liu, Jierui
    Cao, Zhiqiang
    Tang, Yingbo
    Liu, Xilong
    Tan, Min
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 6728 - 6740
  • [7] Category-Level 6D Object Pose Estimation via Cascaded Relation and Recurrent Reconstruction Networks
    Wang, Jiaze
    Chen, Kai
    Dou, Qi
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 4807 - 4814
  • [8] SilhoNet: An RGB Method for 6D Object Pose Estimation
    Billings, Gideon
    Johnson-Roberson, Matthew
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 3727 - 3734
  • [9] On Object Symmetries and 6D Pose Estimation from Images
    Pitteri, Giorgia
    Ramamonjisoa, Michael
    Ilic, Slobodan
    Lepetit, Vincent
    2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 614 - 622
  • [10] Symmetry-Aware 6D Object Pose Estimation via Multitask Learning
    Zhang, Hongjia
    Huang, Junwen
    Xu, Xin
    Fang, Qiang
    Shi, Yifei
    COMPLEXITY, 2020, 2020