Design Optimization For Snapshot Spectral Imaging

被引:0
作者
Ayazgok, Suleyman [1 ]
Oktem, Figen S. [1 ]
机构
[1] Orta Dogu Tekn Univ, Elekt & Elekt Muhendisligi Bolumu, Ankara, Turkey
来源
2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU) | 2019年
关键词
Spectral imaging; design optimization; mutual coherence; computational imaging; inverse problems;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Snapshot spectral imaging enables to reconstruct spectral images from a multiplexed single-shot measurement. Since an inversion is required to form the spectral images computationally, quantitative characterization of their performance is essential to optimize the design. In this paper, we analyze the optimal design of a snapshot spectral imaging technique. This snapshot multi-spectral imaging technique uses a diffractive lens called generalized photon sieve, and various design choices affect its imaging performance. Here we use mutual coherence and t%-average mutual coherence as optimality metrics, which provide quantitative performance measures that are independent of the spectral images to be reconstructed, regularization choices, and signal-to noise ratio. Through numerical simulations, the optimal choices for different design considerations are investigated using these metrics for an application in solar imaging. The results suggest that these optimality metrics provide good measures for reconstruction quality.
引用
收藏
页数:4
相关论文
共 16 条
[1]  
Ayazgok S., 2019, COMPUTATIONAL OPTICA
[2]   Sparsity and incoherence in compressive sampling [J].
Candes, Emmanuel ;
Romberg, Justin .
INVERSE PROBLEMS, 2007, 23 (03) :969-985
[3]   Uncertainty principles and ideal atomic decomposition [J].
Donoho, DL ;
Huo, XM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :2845-2862
[4]   Optimized projections for compressed sensing [J].
Elad, Michael .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (12) :5695-5702
[5]   Computed tomography-based spectral imaging for fluorescence microscopy [J].
Ford, BK ;
Volin, CE ;
Murphy, SM ;
Lynch, RM ;
Descour, MR .
BIOPHYSICAL JOURNAL, 2001, 80 (02) :986-993
[6]   Large-image-format computed tomography imaging spectrometer for fluorescence microscopy [J].
Ford, BK ;
Descour, MR ;
Lynch, RM .
OPTICS EXPRESS, 2001, 9 (09) :444-453
[7]   A review of snapshot multidimensional optical imaging: Measuring photon tags in parallel [J].
Gao, Liang ;
Wang, Lihong V. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 616 :1-37
[8]   Distinguishing modes of cell death using the ImageStream® multispectral imaging flow cytometer [J].
George, TC ;
Basiji, DA ;
Hall, BE ;
Lynch, DH ;
Ortyn, WE ;
Perry, DJ ;
Seo, MJ ;
Zimmerman, CA ;
Morrissey, PJ .
CYTOMETRY PART A, 2004, 59A (02) :237-245
[9]   Review of snapshot spectral imaging technologies [J].
Hagen, Nathan ;
Kudenov, Michael W. .
OPTICAL ENGINEERING, 2013, 52 (09)
[10]   Generalized photon sieves: fine control of complex fields with simple pinhole arrays [J].
Liu, R. ;
Li, F. ;
Padgett, M. J. ;
Phillips, D. B. .
OPTICA, 2015, 2 (12) :1028-1036