Optical studies on sputter-deposited Ag-SiO2 nanoparticle composites

被引:16
作者
Hsieh, J. H. [2 ]
Li, Chuan [1 ]
Wu, Y. Y. [1 ]
Jang, S. C. [1 ]
机构
[1] Natl Cent Univ, Dept Mech Engn, Tao Yuan 32001, Taiwan
[2] Ming Chi Univ Technol, Dept Mat Engn, Taipei 24301, Taiwan
关键词
Ag nanoparticle; SiO2; Thin films; Optical absorption; ABSORPTION; SILVER; GOLD; ELECTRODYNAMICS; FILMS;
D O I
10.1016/j.tsf.2011.04.087
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Silicon dioxide dioxide with nano-size Ag (Au or Cu) particles embedded on its surface has unique optical properties due to the phenomenon known as surface plasmon resonance (SPR). SPR is the resonance of conduction band electrons which generate electromagnetic waves propagating along the dielectric/metal interface. In this study, Ag/SiO2 films with different Ag layers (3/5/7/10 nm) were deposited on glass in sequence by magnetron sputtering. Various silver particle sizes were then created by the subsequent rapid thermal annealing (RTA). The RTA was carried out at elevated temperatures from 450 to 600 degrees C over different periods. All samples were examined by field-emission scanning electron microscope (FESEM) for their surface morphology. For optical properties, the films' transmittance and reflectance were measured with wavelengths ranging from 300 to 900 nm by a UV-VIS-NIR spectrophotometer. Experimental results show that for longer annealing time (15 min) and thicker deposited Ag film, larger Ag particles can be produced. These larger Ag particles on SiO2 surface serve as the resonators of electrons to result in a broader absorption under the visible light irradiation. Following the experimental results, the Mie theory for a small particle in a dielectric medium can be used to estimate the spectrum of absorption. However, such estimate needs an equivalent dielectric constant of medium (SiO2 + air) as input a priori. A newly proposed fitting scheme based on the Mie solution was tested. This scheme yielded a good fit to the experimental absorbance and simultaneously gave a reasonable estimate on the effective dielectric constant. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:7124 / 7128
页数:5
相关论文
共 31 条
[1]   Optical absorption spectra of nanocrystal gold molecules [J].
Alvarez, MM ;
Khoury, JT ;
Schaaff, TG ;
Shafigullin, MN ;
Vezmar, I ;
Whetten, RL .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (19) :3706-3712
[2]   Optical performance and metallic absorption in nanoplasmonic systems [J].
Arnold, Matthew D. ;
Blaber, Martin G. .
OPTICS EXPRESS, 2009, 17 (05) :3835-3847
[3]   Quantitative Determination of the Size Dependence of Surface Plasmon Resonance Damping in Single Ag@SiO2 Nanoparticles [J].
Baida, H. ;
Billaud, P. ;
Marhaba, S. ;
Christofilos, D. ;
Cottancin, E. ;
Crut, A. ;
Lerme, J. ;
Maioli, P. ;
Pellarin, M. ;
Broyer, M. ;
Del Fatti, N. ;
Vallee, F. ;
Sanchez-Iglesias, A. ;
Pastoriza-Santos, I. ;
Liz-Marzan, L. M. .
NANO LETTERS, 2009, 9 (10) :3463-3469
[4]   Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver and gold [J].
Blaber, M. G. ;
Arnold, M. D. ;
Harris, N. ;
Ford, M. J. ;
Cortie, M. B. .
PHYSICA B-CONDENSED MATTER, 2007, 394 (02) :184-187
[5]   Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver [J].
Blaber, Martin G. ;
Arnold, Matthew D. ;
Ford, Michael J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (08) :3041-3045
[6]  
Bohren C. F., 1998, ABSORPTION SCATTERIN, DOI 10.1002/9783527618156
[7]   Plasmonic Properties of Silver Nanoparticles on Two Substrates [J].
Chen, Fuyi ;
Johnston, Roy L. .
PLASMONICS, 2009, 4 (02) :147-152
[8]   Electrodynamics of correlated electron matter [J].
Dordevic, S. V. ;
Basov, D. N. .
ANNALEN DER PHYSIK, 2006, 15 (7-8) :545-570
[9]   The Ag dielectric function in plasmonic metamaterials [J].
Drachev, Vladimir P. ;
Chettiar, Uday K. ;
Kildishev, Alexander V. ;
Yuan, Hsiao-Kuan ;
Cai, Wenshan ;
Shalaev, Vladimir M. .
OPTICS EXPRESS, 2008, 16 (02) :1186-1195
[10]   Electromagnetic fields around silver nanoparticles and dimers [J].
Hao, E ;
Schatz, GC .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (01) :357-366