Quantum speed limits-primer, perspectives, and potential future directions

被引:64
作者
Frey, Michael R. [1 ]
机构
[1] Bucknell Univ, Lewisburg, PA 17837 USA
关键词
Quantum speed limit; Mandelstam-Tamm inequality; Margolus-Levitin inequality; Geometrical state space perspective; Quantum control; Krotov algorithm; Quantum state evolution; Open systems; Non-unitary evolution; Quantum brachistochrone; Quantum Fisher information; Entanglement; UNCERTAINTY RELATIONS; DYNAMICAL EVOLUTION; MAXIMUM SPEED; TIME; STATES; ENTANGLEMENT; ENERGY; GEOMETRY; INEQUALITY; PRINCIPLE;
D O I
10.1007/s11128-016-1405-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fundamental physical limits on the speed of state evolution in quantum systems exist in the form of the Mandelstam-Tammand the Margolus-Levitin inequalities. We give an expository review of the development of these quantum speed limit (QSL) inequalities, including extensions to different energy statistics and generalizations to mixed system states and open and multipartite systems. The QSLs expressed by these various inequalities have implications for quantum computation, quantum metrology, and control of quantum systems. These connections are surveyed, and some important open questions are noted.
引用
收藏
页码:3919 / 3950
页数:32
相关论文
共 90 条
  • [1] Quantum Fisher information for a single qubit system
    Abdel-Khalek, S.
    Berrada, K.
    Obada, A. S. F.
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (03)
  • [2] Minimum time optimal synthesis for two level quantum systems
    Albertini, Francesca
    D'Alessandro, Domenico
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (01)
  • [3] GEOMETRY OF QUANTUM EVOLUTION
    ANANDAN, J
    AHARONOV, Y
    [J]. PHYSICAL REVIEW LETTERS, 1990, 65 (14) : 1697 - 1700
  • [4] Quantum speed limits and optimal Hamiltonians for driven systems in mixed states
    Andersson, O.
    Heydari, H.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (21)
  • [5] Geometry of quantum evolution for mixed quantum states
    Andersson, Ole
    Heydari, Hoshang
    [J]. PHYSICA SCRIPTA, 2014, T160
  • [6] Maximum speed of quantum evolution
    Andrecut, M
    Ali, MK
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2004, 43 (04) : 969 - 974
  • [7] Bounds to unitary evolution
    Andrews, Mark
    [J]. PHYSICAL REVIEW A, 2007, 75 (06):
  • [8] [Anonymous], 1967, P 5 BERK S MATH STAT
  • [9] Bason MG, 2012, NAT PHYS, V8, P147, DOI [10.1038/NPHYS2170, 10.1038/nphys2170]
  • [10] Connection between entanglement and the speed of quantum evolution
    Batle, J
    Casas, M
    Plastino, A
    Plastino, AR
    [J]. PHYSICAL REVIEW A, 2005, 72 (03):