Higher Order Triangular Mixed Finite Element Methods for Semi linear Quadratic Optimal Control Problems

被引:5
作者
Deng, Kang [2 ]
Chen, Yanping [1 ]
Lu, Zuliang [3 ,4 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Hunan Univ Sci & Technol, Sch Math Sci, Xiangtan 411201, Peoples R China
[3] Chongqing Three Gorges Univ, Coll Math & Comp Sci, Chongqing 404000, Peoples R China
[4] Xiangtan Univ, Coll Civil Engn & Mech, Xiangtan 411105, Peoples R China
基金
美国国家科学基金会;
关键词
a priori error estimates; semilinear optimal control problems; higher order triangular elements; mixed finite element methods; APPROXIMATION; SUPERCONVERGENCE;
D O I
10.4208/nmtma.2011.42s.4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a priori error estimates for the quadratic optimal control problems governed by semilinear elliptic partial differential equations using higher order triangular mixed finite element methods. The state and the co-state are approximated by the order k Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise polynomials of order k (k >= 0). A priori error estimates for the mixed finite element approximation of semilinear control problems are obtained. Finally, we present some numerical examples which confirm our theoretical results.
引用
收藏
页码:180 / 196
页数:17
相关论文
共 26 条
[1]  
[Anonymous], 1977, Grundlagen der mathematischen Wissenschaften
[2]  
[Anonymous], 1971, OPTIMAL CONTROL SYST
[3]   Error estimates for the numerical approximation of a semilinear elliptic control problem [J].
Arada, N ;
Casas, E ;
Tröltzsch, F .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 23 (02) :201-229
[4]  
Babuska I., 2001, NUMER MATH SCI COMP
[5]   Second-order analysis for control constrained optimal control problems of semilinear elliptic systems [J].
Bonnans, JF .
APPLIED MATHEMATICS AND OPTIMIZATION, 1998, 38 (03) :303-325
[6]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[7]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[8]   Superconvergence of quadratic optimal control problems by triangular mixed finite element methods [J].
Chen, Yanping .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 75 (08) :881-898
[9]   Superconvergence of mixed finite element methods for optimal control problems [J].
Chen, Yanping .
MATHEMATICS OF COMPUTATION, 2008, 77 (263) :1269-1291
[10]  
Chen YP, 2006, INT J NUMER ANAL MOD, V3, P311