ZnO coupled F-doped g-C3N4: Z-scheme heterojunction for visible-light driven photocatalytic degradation reaction

被引:36
|
作者
Kalisamy, Periyathambi [1 ]
Hossain, Md Shahadat [2 ]
Macadangdang, Romulo R., Jr. [3 ]
Madhubala, V [4 ]
Palanivel, Baskaran [5 ]
Venkatachalam, Munusamy [1 ]
Massoud, Ehab El Sayed [6 ,7 ,8 ]
Sreedevi, Gedi [9 ]
机构
[1] Govt Arts Coll Men, Dept Chem, Krishnagiri 635001, Tamil Nadu, India
[2] Utsunomiya Univ, Grad Sch Engn, Dept Innovat Syst Engn, Utsunomiya, Tochigi 3218585, Japan
[3] Far Eastern Univ, Inst Arts & Sci, Dept Med Technol, Manila 1015, Philippines
[4] Saveetha Univ, Saveetha Sch Engn, Inst Sci & Humanities, Saveetha Inst Med & Tech Sci, Chennai 602105, Tamil Nadu, India
[5] Kings Engn Coll, Dept Phys, Kancheepuram 602117, Tamil Nadu, India
[6] King Khalid Univ, Fac Sci & Arts Dahran Aljnoub, Biol Dept, Abha 61413, Saudi Arabia
[7] King Khalid Univ, Res Ctr Adv Mat Sci RCAMS, Abha 61413, Saudi Arabia
[8] Agr Res Ctr, Soil Water & Environm Res Inst, Giza, Egypt
[9] Yeungnam Univ, Sch Chem Engn, Gyongsan 38541, South Korea
关键词
F doping; g-C3N4; ZnO; Z-scheme; Photodegradation; Visible-light;
D O I
10.1016/j.inoche.2021.109102
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
In this present work, ZnO coupled Fluorine doped g-C3N4 heterojunction has been successfully synthesised by simple wet-chemical method. The structural, optical, morphological, vibrational and charge separation behav-iour of the prepared photocatalysts was examined by various characterization techniques. The Fluorine dopant enhances the bandgap of g-C3N4 to 2.84 eV from 2.79 eV. The heterojunction formation between the nano-particles helps to utilize the more amount of visible-light with low charge recombination rate. The nano-composite F@g-C3N4/ZnO photocatalyst exhibits Z-scheme mechanism with rhodamine B (Rh B) dye degradation efficiency of 97% and 98% under UV-Vis light and direct sunlight respectively. The elemental trapping experiment reveals superoxide radicals and holes are the main active species for Z-scheme dye degradation process. Moreover, the recycle test confirms the stability nature of the prepared F@g-C3N4/ZnO nanocomposite with 87% degradation efficiency at 5th cycle.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4
    Liu, Xin
    Jin, Ailing
    Jia, Yushuai
    Xia, Tonglin
    Deng, Chenxin
    Zhu, Meihua
    Chen, Changfeng
    Chen, Xiangshu
    APPLIED SURFACE SCIENCE, 2017, 405 : 359 - 371
  • [2] Direct Z-scheme porous g-C3N4/BiOI heterojunction for enhanced visible-light photocatalytic activity
    Zhang, Jinfeng
    Fu, Junwei
    Wang, Zhongliao
    Cheng, Bei
    Dai, Kai
    Ho, Wingkei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 766 : 841 - 850
  • [3] Biomass carbon modified Z-scheme g-C3N4/Co3O4 heterojunction with enhanced visible-light photocatalytic activity
    Zhao, Xiaoxu
    Lu, Ziyang
    Ji, Rong
    Zhang, Menghan
    Yi, Chengwu
    Yan, Yongsheng
    CATALYSIS COMMUNICATIONS, 2018, 112 : 49 - 52
  • [4] Fabrication of MIL-88A/g-C3N4 direct Z-scheme heterojunction with enhanced visible-light photocatalytic activity
    Shao, Zhuwang
    Zhang, Dafeng
    Li, Hong
    Su, Changhua
    Pu, Xipeng
    Geng, Yanling
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 220 : 16 - 24
  • [5] Visible-Light Driven Z-scheme g-C3N4/Fe-MOF Photocatalyst for Degradation of Organic Pollutants
    Rana, Garima
    Dhiman, Pooja
    Kumar, Amit
    Dawi, Elmuez A.
    Sharma, Gaurav
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2024, 34 (06) : 2688 - 2704
  • [6] Construction of a Z-scheme g-C3N4/NBGO/BiVO4 heterostructure with visible-light driven photocatalytic degradation of tetracycline: efficiency, reaction pathway and mechanism
    Peng, Xiaoming
    Liu, Caihua
    Zhao, Zilong
    Hu, Fengping
    Dai, Hongling
    CATALYSIS SCIENCE & TECHNOLOGY, 2022, 12 (04) : 1339 - 1358
  • [7] The advanced photocatalytic degradation of atrazine by direct Z-scheme Cu doped ZnO/g-C3N4
    Nguyen Thi Thanh Truc
    Dao Sy Duc
    Doan Van Thuan
    Al Tahtamouni, Talal
    Thanh-Dong Pham
    Nguyen Thi Hanh
    Dinh Trinh Tran
    Minh Viet Nguyen
    Nhat Minh Dang
    Nguyen Thi Phuong Le Chi
    Van Noi Nguyen
    APPLIED SURFACE SCIENCE, 2019, 489 : 875 - 882
  • [8] Z-scheme Mesoporous CdIn2S4/g-C3N4 heterojunction for enlarged photocatalytic efficiency utilizing visible-light illumination
    Alsheheri, Soad Z.
    Mohamed, Reda M.
    OPTICAL MATERIALS, 2022, 123
  • [9] NiCo/ZnO/g-C3N4 Z-scheme heterojunction nanoparticles with enhanced photocatalytic degradation oxytetracycline
    Wu, Jiao
    Hu, Jingyu
    Qian, Honghong
    Li, Jianjun
    Yang, Ran
    Qu, Lingbo
    DIAMOND AND RELATED MATERIALS, 2022, 121
  • [10] A Z-scheme BiYO3/g-C3N4 heterojunction photocatalyst for the degradation of organic pollutants under visible light irradiation
    Sasikala, Parthasarathy
    Bavani, Thirugnanam
    Selvaraj, Manickam
    Preeyanghaa, Mani
    Neppolian, Bernaurdshaw
    Murugesan, Sepperumal
    Madhavan, Jagannathan
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (14) : 41095 - 41106