Radiogenomics and Artificial Intelligence Approaches Applied to Cardiac Computed Tomography Angiography and Cardiac Magnetic Resonance for Precision Medicine in Coronary Heart Disease: A Systematic Review

被引:33
作者
Infante, Teresa [1 ]
Cavaliere, Carlo [2 ]
Punzo, Bruna [2 ]
Grimaldi, Vincenzo [2 ]
Salvatore, Marco [2 ]
Napoli, Claudio [1 ,2 ]
机构
[1] Univ Campania Luigi Vanvitelli, Dept Adv Med & Surg Sci DAMSS, Naples, Italy
[2] IRCCS SDN, Naples, Italy
关键词
artificial intelligence; biomarkers; cardiac magnetic resonance; computed tomography angiography; coronary heart disease; MACHINE LEARNING-INTEGRATION; MYOCARDIAL-INFARCTION; TEXTURE ANALYSIS; CT ANGIOGRAPHY; PRIMARY PREVENTION; NETWORK MEDICINE; RADIOMICS; ATHEROSCLEROSIS; IDENTIFICATION; PERFORMANCE;
D O I
10.1161/CIRCIMAGING.121.013025
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The risk of coronary heart disease (CHD) clinical manifestations and patient management is estimated according to risk scores accounting multifactorial risk factors, thus failing to cover the individual cardiovascular risk. Technological improvements in the field of medical imaging, in particular, in cardiac computed tomography angiography and cardiac magnetic resonance protocols, laid the development of radiogenomics. Radiogenomics aims to integrate a huge number of imaging features and molecular profiles to identify optimal radiomic/biomarker signatures. In addition, supervised and unsupervised artificial intelligence algorithms have the potential to combine different layers of data (imaging parameters and features, clinical variables and biomarkers) and elaborate complex and specific CHD risk models allowing more accurate diagnosis and reliable prognosis prediction. Literature from the past 5 years was systematically collected from PubMed and Scopus databases, and 60 studies were selected. We speculated the applicability of radiogenomics and artificial intelligence through the application of machine learning algorithms to identify CHD and characterize atherosclerotic lesions and myocardial abnormalities. Radiomic features extracted by cardiac computed tomography angiography and cardiac magnetic resonance showed good diagnostic accuracy for the identification of coronary plaques and myocardium structure; on the other hand, few studies exploited radiogenomics integration, thus suggesting further research efforts in this field. Cardiac computed tomography angiography resulted the most used noninvasive imaging modality for artificial intelligence applications. Several studies provided high performance for CHD diagnosis, classification, and prognostic assessment even though several efforts are still needed to validate and standardize algorithms for CHD patient routine according to good medical practice.
引用
收藏
页码:1133 / 1146
页数:14
相关论文
共 99 条
[1]   Lesion-Specific and Vessel-Related Determinants of Fractional Flow Reserve Beyond Coronary Artery Stenosis [J].
Ahmadi, Amir ;
Leipsic, Jonathon ;
Ovrehus, Kristian A. ;
Gaur, Sara ;
Bagiella, Emilia ;
Ko, Brian ;
Dey, Damini ;
LaRocca, Gina ;
Jensen, Jesper M. ;
Botker, Hans Erik ;
Achenbach, Stephan ;
De Bruyne, Bernard ;
Norgaard, Bjarne L. ;
Narula, Jagat .
JACC-CARDIOVASCULAR IMAGING, 2018, 11 (04) :521-530
[2]   The Challenges of Diagnostic Imaging in the Era of Big Data [J].
Aiello, Marco ;
Cavaliere, Carlo ;
D'Albore, Antonio ;
Salvatore, Marco .
JOURNAL OF CLINICAL MEDICINE, 2019, 8 (03)
[3]  
Arnett DK, 2019, CIRCULATION, V140, pE596, DOI [10.1161/CIR.0000000000000677, 10.1161/CIR.0000000000000678, 10.1016/j.jacc.2019.03.009, 10.1016/j.jacc.2019.03.010]
[4]   Subacute and Chronic Left Ventricular Myocardial Scar: Accuracy of Texture Analysis on Nonenhanced Cine MR Images [J].
Baessler, Bettina ;
Mannil, Manoj ;
Oebel, Sabrina ;
Maintz, David ;
Alkadhi, Hatem ;
Manka, Robert .
RADIOLOGY, 2018, 286 (01) :103-112
[5]   Automated cardiovascular magnetic resonance image analysis with fully convolutional networks [J].
Bai, Wenjia ;
Sinclair, Matthew ;
Tarroni, Giacomo ;
Oktay, Ozan ;
Rajchl, Martin ;
Vaillant, Ghislain ;
Lee, Aaron M. ;
Aung, Nay ;
Lukaschuk, Elena ;
Sanghvi, Mihir M. ;
Zemrak, Filip ;
Fung, Kenneth ;
Paiva, Jose Miguel ;
Carapella, Valentina ;
Kim, Young Jin ;
Suzuki, Hideaki ;
Kainz, Bernhard ;
Matthews, Paul M. ;
Petersen, Steffen E. ;
Piechnik, Stefan K. ;
Neubauer, Stefan ;
Glocker, Ben ;
Rueckert, Daniel .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2018, 20
[6]   Comparison of Machine Learning Computed Tomography-Based Fractional Flow Reserve and Coronary CT Angiography-Derived Plaque Characteristics with Invasive Resting Full-Cycle Ratio [J].
Baumann, Stefan ;
Hirt, Markus ;
Rott, Christina ;
Oezdemir, Goekce H. ;
Tesche, Christian ;
Becher, Tobias ;
Weiss, Christel ;
Hetjens, Svetlana ;
Akin, Ibrahim ;
Schoenberg, Stefan O. ;
Borggrefe, Martin ;
Janssen, Sonja ;
Overhoff, Daniel ;
Lossnitzer, Dirk .
JOURNAL OF CLINICAL MEDICINE, 2020, 9 (03)
[7]   Gender differences in the diagnostic performance of machine learning coronary CT angiography-derived fractional flow reserve -results from the MACHINE registry [J].
Baumann, Stefan ;
Renker, Matthias ;
Schoepf, U. Joseph ;
De Cecco, Carlo N. ;
Coenen, Adriaan ;
De Geer, Jakob ;
Kruk, Mariusz ;
Kim, Young-Hak ;
Albrecht, Moritz H. ;
Duguay, Taylor M. ;
Jacobs, Brian E. ;
Bayer, Richard R. ;
Litwin, Sheldon E. ;
Weiss, Christel ;
Akin, Ibrahim ;
Borggrefe, Martin ;
Yang, Dong Hyun ;
Kepka, Cezary ;
Persson, Anders ;
Nieman, Koen ;
Tesche, Christian .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 119
[8]   Big Data and Machine Learning in Health Care [J].
Beam, Andrew L. ;
Kohane, Isaac S. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2018, 319 (13) :1317-1318
[9]   Strengths and Opportunities of Network Medicine in Cardiovascular Diseases [J].
Benincasa, Giuditta ;
Marfella, Raffaele ;
Della Mura, Nunzia ;
Schiano, Concetta ;
Napoli, Claudio .
CIRCULATION JOURNAL, 2020, 84 (02) :144-152
[10]   Improving patient identification for advanced cardiac imaging through machine learning-integration of clinical and coronary CT angiography data [J].
Benjamins, Jan Walter ;
Yeung, Ming Wai ;
Maaniitty, Teemu ;
Saraste, Antti ;
Klen, Riku ;
van der Harst, Pim ;
Knuuti, Juhani ;
Juarez-Orozco, Luis Eduardo .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2021, 335 :130-136