Accurate hyperspectral imaging of mineralised outcrops: An example from lithium-bearing pegmatites at Uis, Namibia

被引:39
作者
Booysen, Rene [1 ,2 ]
Lorenz, Sandra [1 ]
Thiele, Samuel T. [1 ]
Fuchsloch, Warrick C. [3 ]
Marais, Timothy [3 ]
Nex, Paul A. M. [2 ]
Gloaguen, Richard [1 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Helmholtz Inst Freiberg Resource Technol, Chemnitzer Str 40, D-09599 Freiberg, Germany
[2] Univ Witwatersrand, Sch Geosci, Jan Smuts Ave 1, ZA-2000 Johannesburg, South Africa
[3] AfriTin Min, Corner Harries & Fricker Rd, Illovo, Sandton, South Africa
关键词
Outcrop sensing; Hyperspectral imaging; Li-bearing pegmatites; Mineral exploration; SPECTROSCOPY; BELT; FELDSPARS;
D O I
10.1016/j.rse.2021.112790
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Efficient, socially acceptable and rapid methods of exploration are required to discover new deposits and enable the green energy transition. Sustainable exploration requires a combination of innovative thinking and new technologies. Hyperspectral imaging (HSI) is a rapidly developing technology and allows for fast and systematic mineral mapping, facilitating exploration of the Earth's surface at various scales on a variety of platforms. Newly available sensors allow data capture over a wide spectral range, and provide information about the abundance and spatial location of ore and pathfinder minerals in drill-core, hand samples and outcrops with mm to cm precision. Conversely, the complex geometries of the imaged surfaces affect the spectral quality and signal-tonoise ratio (SnR) of HSI data at these very narrow spatial samplings. Additionally, the complex mineral assemblages found in hydrothermally altered ore deposits can make interpretation of spectral results a challenge. In this contribution, we propose an innovative approach that integrates multiple sensors and scales of data acquisition to help disentangle complex mineralogy associated with lithium and tin mineralisation in the Uis pegmatite complex, Namibia. We train this method using hand samples and finally produce a three-dimensional (3D) point cloud for mapping lithium mineralisation in the open pit. We were able to identify and map lithium bearing cookeite and montebrasite at outcrop scale. The accuracy of the approach was validated by drill-core data, XRD analysis and LIBS measurements. This approach facilitates efficient mapping of complex terrains, as well as important monitoring and optimisation of ore extraction. Our method can easily be adapted to other minerals relevant to the mining industry.
引用
收藏
页数:17
相关论文
共 54 条
[1]  
AfriTin Mining Ltd, 2019, ALT MET MARK
[2]   Mineral supply for sustainable development requires resource governance [J].
Ali, Saleem H. ;
Giurco, Damien ;
Arndt, Nicholas ;
Nickless, Edmund ;
Brown, Graham ;
Demetriades, Alecos ;
Durrheim, Ray ;
Enriquez, Maria Amelia ;
Kinnaird, Judith ;
Littleboy, Anna ;
Meinert, Lawrence D. ;
Oberhansli, Roland ;
Salem, Janet ;
Schodde, Richard ;
Schneider, Gabi ;
Vidal, Olivier ;
Yakovleva, Natalia .
NATURE, 2017, 543 (7645) :367-372
[3]   Characterization of fluid inclusions from mineralized pegmatites of the Damara Belt, Namibia: insight into late-stage fluid evolution and implications for mineralization [J].
Ashworth, Luisa ;
Kinnaird, Judith Ann ;
Nex, Paul Andrew Martin ;
Erasmus, Rudolph Marthinus ;
Przybylowicz, Wojciech Jozef .
MINERALOGY AND PETROLOGY, 2018, 112 (06) :753-765
[4]   Infrared spectroscopy of micas [J].
Beran, A .
MICAS: CRYSTAL CHEMISTRY AND METAMORPHIC PETROLOGY, 2002, 46 :351-369
[5]   Hyperspectral REE (Rare Earth Element) Mapping of Outcrops-Applications for Neodymium Detection [J].
Boesche, Nina Kristine ;
Rogass, Christian ;
Lubitz, Christin ;
Brell, Maximilian ;
Herrmann, Sabrina ;
Mielke, Christian ;
Tonn, Sabine ;
Appelt, Oona ;
Altenberger, Uwe ;
Kaufmann, Hermann .
REMOTE SENSING, 2015, 7 (05) :5160-5186
[6]   Detection of REEs with lightweight UAV-based hyperspectral imaging [J].
Booysen, Rene ;
Jackisch, Robert ;
Lorenz, Sandra ;
Zimmermann, Robert ;
Kirsch, Moritz ;
Nex, Paul A. M. ;
Gloaguen, Richard .
SCIENTIFIC REPORTS, 2020, 10 (01)
[7]   Terrestrial lidar and hyperspectral data fusion products for geological outcrop analysis [J].
Buckley, Simon J. ;
Kurz, Tobias H. ;
Howell, John A. ;
Schneider, Danilo .
COMPUTERS & GEOSCIENCES, 2013, 54 :249-258
[8]   Potential of Sentinel-2 data in the detection of lithium (Li)-bearing pegmatites: a study case [J].
Cardoso-Fernandes, J. ;
Lima, A. ;
Teodoro, A. C. .
EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS IX, 2018, 10790
[9]   MULTI-SCALE APPROACH USING REMOTE SENSING TECHNIQUES FOR LITHIUM PEGMATITE EXPLORATION: FIRST RESULTS [J].
Cardoso-Fernandes, Joana ;
Teodoro, Ana Claudia ;
Lima, Alexandre ;
Mielke, Christian ;
Koerting, Friederike ;
Roda-Robles, Encarnacion ;
Cauzid, Jean .
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, :5226-5229
[10]   Detecting Lithium (Li) Mineralizations from Space: Current Research and Future Perspectives [J].
Cardoso-Fernandes, Joana ;
Teodoro, Ana C. ;
Lima, Alexandre ;
Perrotta, Monica ;
Roda-Robles, Encarnacion .
APPLIED SCIENCES-BASEL, 2020, 10 (05)