On the thermal coarsening and transformation of nanoscale oxide inclusions in 316L stainless steel manufactured by laser powder bed fusion and its influence on impact toughness

被引:44
|
作者
Deng, Pu [1 ]
Song, Miao [2 ]
Yang, Jingfan [1 ]
Pan, Qingyu [1 ]
McAllister, Sarah [3 ]
Li, Lin [3 ]
Prorok, Barton C. [1 ]
Lou, Xiaoyuan [1 ]
机构
[1] Auburn Univ, Mat Res & Educ Ctr, Dept Mech Engn, Auburn, AL 36849 USA
[2] Univ Michigan, Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA
[3] Univ Alabama, Dept Met & Mat Engn, Tuscaloosa, AL USA
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2022年 / 835卷
关键词
Austenitic stainless steel; Laser-powder bed fusion additive manufacturing; Nano-oxides; Heat treatment; Diffusion; Coarsening; Grain boundary migration; Impact toughness; Fracture; GAMMA-TIAL ALLOY; GRAIN-BOUNDARIES; CREEP-PROPERTIES; FERRITIC STEEL; ALPHA-IRON; PARTICLES; DIFFUSION; TEMPERATURE; PRECIPITATION; STABILITY;
D O I
10.1016/j.msea.2022.142690
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The thermal evolution of nanoscale oxide inclusions in 316L stainless steel (SS) manufactured by laser powder bed fusion additive manufacturing (AM) was explored. The size, chemical composition, morphology, and distribution of the oxides were characterized as the function of heat treatment conditions. The study revealed the mechanistic driving force of the rapid oxide coarsening during recrystallization. Ostwald ripening governs oxide coarsening. The active grain boundary-oxide interaction at the early stage of recrystallization accelerated oxide coarsening via enhanced solute diffusion along grain boundaries. Pipe diffusion along dislocation cellular boundaries has a negligible contribution to oxide coarsening. At high temperatures (T > 1065 degrees C), although lattice diffusion primarily controlled the oxide growth, the contribution from the grain-boundary diffusion was necessary. The transformation from MnSiO3 to CrMn2O4 took place in the un-recrystallized grains but was not observed when recrystallization started. The interaction of grain boundary and oxides during recrystallization resulted in a high fraction of oxides accumulated at grain boundaries. While oxide coarsening does not significantly alter the toughness value, grain-boundary oxides promote microvoid formation and intergranular fracture under Charpy impact in the recrystallized AM 316L SS.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Heat Treatment Effect on the Corrosion Resistance of 316L Stainless Steel Produced by Laser Powder Bed Fusion
    Sangoi, Kevin
    Nadimi, Mahdi
    Song, Jie
    Fu, Yao
    METALS, 2025, 15 (01)
  • [32] Effect of Heat Treatment on Fatigue Performance of 316L Stainless Steel Fabricated by Laser Powder Bed Fusion
    Li, Zhehan
    Xie, Deqiao
    Zhou, Kai
    Naqvi, Syed Mesum Raza
    Wang, Dongsheng
    Zhao, Jianfeng
    Shen, Lida
    Tian, Zongjun
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2024, 146 (04):
  • [33] Optimization of mechanical property of 316L stainless steel obtained by laser powder bed fusion and thermomechanical process
    Lv, Jinlong
    Guo, Yupeng
    Cao, Yuqing
    Laiq, Zaman
    Zhou, Zhiping
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 923
  • [34] Finite element modeling of melt pool dynamics in laser powder bed fusion of 316L stainless steel
    Trejos-Taborda, Juan
    Reyes-Osorio, Luis
    Garza, Carlos
    del Carmen Zambrano-Robledo, Patricia
    Lopez-Botello, Omar
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 120 (5-6): : 3947 - 3961
  • [35] Interfacial characterisation of multi-material 316L stainless steel/Inconel 718 fabricated by laser powder bed fusion
    Yusuf, Shahir Mohd
    Zhao, Xiao
    Yang, Shoufeng
    Gao, Nong
    MATERIALS LETTERS, 2021, 284
  • [36] Microstructure and mechanical properties of a modified 316 austenitic stainless steel alloy manufactured by laser powder bed fusion
    Svahn, F.
    Mishra, P.
    Edin, E.
    Akerfeldt, P.
    Antti, M. -l.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 28 : 1452 - 1462
  • [37] Effects of the heat treatment on the microstructure and corrosion behavior of 316 L stainless steel manufactured by Laser Powder Bed Fusion
    Bedmar, J.
    Garcia-Rodriguez, S.
    Roldan, M.
    Torres, B.
    Rams, J.
    CORROSION SCIENCE, 2022, 209
  • [38] Creep behavior of 316 L stainless steel manufactured by laser powder b e d fusion
    Li, Meimei
    Zhang, Xuan
    Chen, Wei-Ying
    Byun, T. S.
    JOURNAL OF NUCLEAR MATERIALS, 2021, 548
  • [39] Tailoring deformation-induced martensitic transformation through cellular engineering in laser powder bed fusion processed 316L stainless steel
    Jeong, Sang Guk
    Kim, Eun Seong
    Kwon, Hyeonseok
    Ahn, Soung Yeoul
    Choe, Jungho
    Karthik, Gangaraju Manogna
    Heo, Yoon-Uk
    Kim, Hyoung Seop
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 898
  • [40] Recrystallization in non-conventional microstructures of 316L stainless steel produced via laser powder-bed fusion: effect of particle coarsening kinetics
    Pinto, F. C.
    Aota, L. S.
    Souza Filho, I. R.
    Raabe, D.
    Sandim, H. R. Z.
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (21) : 9576 - 9598