Micro-Doppler Characteristics of Elderly Gait Patterns with Walking Aids

被引:0
作者
Amin, Moeness G. [1 ]
Ahmad, Fauzia [1 ]
Zhang, Yimin D. [1 ]
Boashash, Boualem [2 ]
机构
[1] Villanova Univ, Ctr Adv Commun, Villanova, PA 19085 USA
[2] Qatar Univ, Coll Engn, Dept Elect Engn, Doha, Qatar
来源
RADAR SENSOR TECHNOLOGY XIX; AND ACTIVE AND PASSIVE SIGNATURES VI | 2015年 / 9461卷
关键词
Micro-Doppler; human gait; assisted living; eldercare; walking aids; FALL DETECTION; RADAR; SIGNATURES;
D O I
10.1117/12.2178398
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we analyze the micro-Doppler signatures of elderly gait patterns in the presence of walking aids using radars. The signatures are based on real data experiments conducted in a laboratory environment using human subjects walking with a walking cane and a walker. Short-time Fourier transform is used to provide the local signal behavior over frequency and to detail the changes in the micro-Doppler signatures over time. Intrinsic differences in the Doppler and micro-Doppler signatures of the elderly gait observed with and without the use of a walking aid are highlighted. Features that capture these differences can be effective in discriminating gait with walking aids from normal human gait.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Laser Doppler & Micro-Doppler Composite Signal Simulation for Vibration Characteristics Optical Sensor of Intelligent Transportation System
    Zhao, Hongming
    Gao, Yang
    Du, Jian
    Zhang, Ying
    Yu, Hong
    Cao, Qiang
    OPTICAL SENSORS 2019, 2019, 11028
  • [42] Decomposition of Multicomponent Micro-Doppler Signals Based on HHT-AMD
    Li, Wenchao
    Kuang, Gangyao
    Xiong, Boli
    APPLIED SCIENCES-BASEL, 2018, 8 (10):
  • [43] Open-Set Human Identification Based on Gait Radar Micro-Doppler Signatures
    Ni, Zhongfei
    Huang, Binke
    IEEE SENSORS JOURNAL, 2021, 21 (06) : 8226 - 8233
  • [44] Short-Time State-Space Method for Micro-Doppler Identification of Walking Subject Using UWB Impulse Doppler Radar
    Ren, Lingyun
    Nghia Tran
    Foroughian, Farnaz
    Naishadham, Krishna
    Piou, Jean E.
    Kilic, Ozlem
    Fathy, Aly E.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2018, 66 (07) : 3521 - 3534
  • [45] Toward Unobtrusive In-Home Gait Analysis Based on Radar Micro-Doppler Signatures
    Seifert, Ann-Kathrin
    Amin, Moeness G.
    Zoubir, Abdelhak M.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (09) : 2629 - 2640
  • [46] Multiscenario Open-Set Gait Recognition Based on Radar Micro-Doppler Signatures
    Yang, Yang
    Ge, Yanyan
    Li, Beichen
    Wang, Qing
    Lang, Yue
    Li, Kaiming
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [47] DecompNet: Deep Context Dependent Decomposition Network for Micro-Doppler Signature of Walking Human
    Ostovan, Mahdi
    Samadi, Sadegh
    Kazemi, Alireza
    IEEE SENSORS JOURNAL, 2021, 21 (22) : 25862 - 25869
  • [48] Radar Micro-Doppler Simulations of Classification Capability with Frequency
    Tahmoush, Dave
    Silvious, Jerry
    RADAR SENSOR TECHNOLOGY XVI, 2012, 8361
  • [49] Micro-Doppler Based Target Recognition With Radars: A Review
    Hanif, Ali
    Muaz, Muhammad
    Hasan, Azhar
    Adeel, Muhammad
    IEEE SENSORS JOURNAL, 2022, 22 (04) : 2948 - 2961
  • [50] Experimental analysis of micro-Doppler characteristics of drones and birds for classification purposes
    Tsang, Bryan T.
    Narayanan, Ram M.
    Bharadwaj, Ramesh
    RADAR SENSOR TECHNOLOGY XXVI, 2022, 12108