Pontryagin duality in the class of precompact Abelian groups and the Baire property

被引:9
作者
Bruguera, M. [1 ]
Tkachenko, M. [2 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
[2] Univ Autonoma Metropolitana, Dept Matemat, Mexico City 09340, DF, Mexico
关键词
TOPOLOGICAL-GROUPS; CONTINUITY; SUBGROUPS; PRODUCTS; SPACES;
D O I
10.1016/j.jpaa.2012.03.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a wide class of reflexive, precompact, non-compact, Abelian topological groups G determined by three requirements. They must have the Baire property, satisfy the open refinement condition, and contain no infinite compact subsets. This combination of properties guarantees that all compact subsets of the dual group G(boolean AND) are finite. We also show that many (non-reflexive) precompact Abelian groups are quotients of reflexive precompact Abelian groups. This includes all precompact almost metrizable groups with the Baire property and their products. Finally, given a compact Abelian group G of weight >= 2(omega) we find proper dense subgroups H-1 and H-2 of G such that H-1 is reflexive and pseudocompact, while H-2 is non-reflexive and almost metrizable. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2636 / 2647
页数:12
相关论文
共 41 条