Subtraction of correlated noise in global networks of gravitational-wave interferometers

被引:38
作者
Coughlin, Michael W. [1 ]
Christensen, Nelson L. [2 ]
De Rosa, Rosario [3 ,4 ]
Fiori, Irene [5 ]
Golkowski, Mark [6 ]
Guidry, Melissa [7 ]
Harms, Jan [8 ]
Kubisz, Jerzy [9 ]
Kulak, Andrzej [10 ]
Mlynarczyk, Janusz
Paoletti, Federico [11 ]
Thrane, Eric [12 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Carleton Coll, Phys & Astron, Northfield, MN 55057 USA
[3] Complesso Univ Monte S Angelo, Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
[4] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy
[5] EGO, I-56021 Pisa, Italy
[6] Univ Colorado, Dept Elect Engn, Denver, CO 80204 USA
[7] Coll William & Mary, Dept Phys, Williamsburg, VA 23185 USA
[8] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy
[9] Jagiellonian Univ, Astron Observ, Krakow, Poland
[10] AGH Univ Sci & Technol, Dept Elect, Krakow, Poland
[11] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy
[12] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia
基金
美国国家科学基金会;
关键词
Schumann resonances; correlated noise; Wiener filter;
D O I
10.1088/0264-9381/33/22/224003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The recent discovery of merging black holes suggests that a stochastic gravitational-wave background is within reach of the advanced detector network operating at design sensitivity. However, correlated magnetic noise from Schumann resonances threatens to contaminate observation of a stochastic background. In this paper, we report on the first effort to eliminate intercontinental correlated noise from Schumann resonances using Wiener filtering. Using magnetometers as proxies for gravitational-wave detectors, we demonstrate as much as a factor of two reduction in the coherence between magnetometers on different continents. While much work remains to be done, our results constitute a proof-of-principle and motivate follow-up studies with a dedicated array of magnetometers.
引用
收藏
页码:1 / 13
页数:13
相关论文
empty
未找到相关数据