An automated approach for segmentation of intravascular ultrasound images based on parametric active contour models

被引:19
作者
Vard, Alireza [1 ]
Jamshidi, Kamal [1 ]
Movahhedinia, Naser [1 ]
机构
[1] Univ Isfahan, Fac Engn, Dept Comp Engn, Esfahan 81746, Iran
关键词
Segmentation; Active contour models; Intravascular ultrasound; Autocorrelation; Texture; ALGORITHMS; BORDERS;
D O I
10.1007/s13246-012-0131-7
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents a fully automated approach to detect the intima and media-adventitia borders in intravascular ultrasound images based on parametric active contour models. To detect the intima border, we compute a new image feature applying a combination of short-term autocorrelations calculated for the contour pixels. These feature values are employed to define an energy function of the active contour called normalized cumulative short-term autocorrelation. Exploiting this energy function, the intima border is separated accurately from the blood region contaminated by high speckle noise. To extract media-adventitia boundary, we define a new form of energy function based on edge, texture and spring forces for the active contour. Utilizing this active contour, the media-adventitia border is identified correctly even in presence of branch openings and calcifications. Experimental results indicate accuracy of the proposed methods. In addition, statistical analysis demonstrates high conformity between manual tracing and the results obtained by the proposed approaches.
引用
收藏
页码:135 / 150
页数:16
相关论文
共 38 条
[1]  
Almageed WA, 2004, INT J IMAGE GRAPHICS, V4, P343, DOI DOI 10.1142/S0219467804001452
[2]   Agreement between methods of measurement with multiple observations per individual [J].
Bland, J. Martin ;
Altman, Douglas G. .
JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2007, 17 (04) :571-582
[3]   Lumen detection in human IVUS images using region-growing [J].
Brathwaite, PA ;
Chandran, KB ;
McPherson, DD ;
Dove, EL .
COMPUTERS IN CARDIOLOGY 1996, 1996, :37-40
[4]   Fully automatic luminal contour segmentation in intracoronary ultrasound imaging - A statistical approach [J].
Brusseau, E ;
de Korte, CL ;
Mastik, F ;
Schaar, J ;
van der Steen, AFW .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (05) :554-566
[5]   Fast-marching segmentation of three-dimensional intravascular ultrasound images: A pre- and post-intervention study [J].
Cardinal, Marie-Helene Roy ;
Soulez, Gilles ;
Tardif, Jean-Claude ;
Meunier, Jean ;
Cloutier, Guy .
MEDICAL PHYSICS, 2010, 37 (07) :3633-3647
[6]   Intravascular ultrasound image segmentation:: A three-dimensional fast-marching method based on gray level distributions [J].
Cardinal, MHR ;
Meunier, J ;
Soulez, G ;
Maurice, RL ;
Therasse, É ;
Cloutier, G .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (05) :590-601
[7]   A methodology for evaluation of boundary detection algorithms on medical images [J].
Chalana, V ;
Kim, YM .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1997, 16 (05) :642-652
[8]   Quantitative measurements in IVUS images [J].
Dijkstra, J ;
Koning, G ;
Reiber, JHC .
INTERNATIONAL JOURNAL OF CARDIAC IMAGING, 1999, 15 (06) :513-522
[9]  
Santos ED, 2005, P ANN INT IEEE EMBS, P3471
[10]   A novel active contour model for fully automated segmentation of intravascular ultrasound images: In vivo validation in human coronary arteries [J].
Giannoglou, George D. ;
Chatzizisis, Yiannis S. ;
Koutkias, Vassilis ;
Kompatsiaris, Loannis ;
Papadogiorgaki, Maria ;
Mezaris, Vasileios ;
Parissi, Eirini ;
Diamantopoulos, Panagiotis ;
Strintzis, Michael G. ;
Maglaveras, Nicos ;
Parcharidis, George E. ;
Louridas, George E. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2007, 37 (09) :1292-1302