BETWEEN OLSE AND BLUE

被引:8
作者
Baksalary, Oskar Maria [1 ]
Trenkler, Goetz [2 ]
机构
[1] Adam Mickiewicz Univ Poznan, Fac Phys, PL-61614 Poznan, Poland
[2] Dortmund Univ Technol, Dept Stat, D-44221 Dortmund, Germany
关键词
Amemiya's estimator; best linear unbiased estimator; general Gauss-Markov model; generalized least squares estimator; linearly complete statistics; linearly minimal sufficient statistics; linearly sufficient statistics; oblique projector; ordinary least squares estimator; partitioned matrix; GENERALIZED LEAST-SQUARES; ORTHOGONAL PROJECTORS; MATRIX;
D O I
10.1111/j.1467-842X.2011.00635.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Several estimators of X beta under the general Gauss Markov model M = {y, X beta, sigma V-2} are considered. Particular attention is paid to those estimators whose efficiency lies between that of the ordinary least squares estimator and that of the best linear unbiased estimator.
引用
收藏
页码:289 / 303
页数:15
相关论文
共 17 条
[2]   PARTIALLY GENERALIZED LEAST-SQUARES AND 2-STAGE LEAST-SQUARES ESTIMATORS [J].
AMEMIYA, T .
JOURNAL OF ECONOMETRICS, 1983, 23 (02) :275-283
[3]   2 RELATIONS BETWEEN OBLIQUE AND LAMBDA-ORTHOGONAL PROJECTORS [J].
BAKSALARY, JK ;
KALA, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 24 (APR) :99-103
[4]  
BAKSALARY JK, 1987, P 2 INT TAMP C STAT, P113
[5]   Rank formulae from the perspective of orthogonal projectors [J].
Baksalary, Oskar Maria ;
Trenkler, Goetz .
LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (06) :607-625
[6]   A projector oriented approach to the best linear unbiased estimator [J].
Baksalary, Oskar Maria ;
Trenkler, Goetz .
STATISTICAL PAPERS, 2009, 50 (04) :721-733
[7]  
GAFEKE N., 1982, MODERN APPL MATH OPT, P595
[8]   The general Gauss-Markov model with possibly singular dispersion matrix [J].
Gross, J .
STATISTICAL PAPERS, 2004, 45 (03) :311-336
[9]  
Gross J, 1997, COMMUN STAT-THEOR M, V26, P2075
[10]  
Hartung J., 2008, Statistical meta-analysis with applications