Two-Step Solver for Nonlinear Equations

被引:1
|
作者
Argyros, Ioannis K. [1 ]
Shakhno, Stepan [2 ]
Yarmola, Halyna [2 ]
机构
[1] Cameron Univ, Dept Math, Lawton, OK 73505 USA
[2] Ivan Franko Natl Univ Lviv, Fac Appl Math & Informat, Univ Str 1, UA-79000 Lvov, Ukraine
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 02期
关键词
Nondifferentiable operator; nonlinear equation; divided difference; Lipschitz condition; convergence order; local and semilocal convergence; CONVERGENCE;
D O I
10.3390/sym11020128
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we present a two- step solver for nonlinear equations with a nondifferentiable operator. This method is based on two methods of order of convergence 1 + root 2. We study the local and a semilocal convergence using weaker conditions in order to extend the applicability of the solver. Finally, we present the numerical example that confirms the theoretical results.
引用
收藏
页数:9
相关论文
共 50 条