Preoperative prediction of sentinel lymph node metastasis in breast cancer based on radiomics of T2-weighted fat-suppression and diffusion-weighted MRI

被引:238
作者
Dong, Yuhao [1 ,2 ]
Feng, Qianjin [3 ]
Yang, Wei [3 ]
Lu, Zixiao [3 ]
Deng, Chunyan [3 ]
Zhang, Lu [1 ]
Lian, Zhouyang [1 ]
Liu, Jing [1 ]
Luo, Xiaoning [1 ]
Pei, Shufang [1 ]
Mo, Xiaokai [1 ,2 ]
Huang, Wenhui [1 ]
Liang, Changhong [1 ]
Zhang, Bin [1 ]
Zhang, Shuixing [1 ]
机构
[1] Guangdong Acad Med Sci, Guangdong Gen Hosp, Dept Radiol, 106 Zhongshan Er Rd, Guangzhou 510080, Guangdong, Peoples R China
[2] Shantou Univ, Coll Med, Grad Coll, Shantou, Guangdong, Peoples R China
[3] Southern Med Univ, Sch Biomed Engn, Guangdong Prov Key Lab Med Image Proc, Guangzhou, Guangdong, Peoples R China
关键词
Imaging; Breast cancer; Sentinel lymph node metastasis; Radiomics; Preoperative prediction; INVASIVE COMPONENTS; AMERICAN-COLLEGE; MSKCC NOMOGRAM; DISSECTION; BIOPSY; VALIDATION; RECURRENCE; COEFFICIENT; THERAPY; TUMOR;
D O I
10.1007/s00330-017-5005-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
To predict sentinel lymph node (SLN) metastasis in breast cancer patients using radiomics based on T-2-weighted fat suppression (T-2-FS) and diffusion-weighted MRI (DWI). We enrolled 146 patients with histologically proven breast cancer. All underwent pretreatment T-2-FS and DWI MRI scan. In all, 10,962 texture and four non-texture features were extracted for each patient. The 0.623 + bootstrap method and the area under the curve (AUC) were used to select the features. We constructed ten logistic regression models (orders of 1-10) based on different combination of image features using stepwise forward method. For T-2-FS, model 10 with ten features yielded the highest AUC of 0.847 in the training set and 0.770 in the validation set. For DWI, model 8 with eight features reached the highest AUC of 0.847 in the training set and 0.787 in the validation set. For joint T-2-FS and DWI, model 10 with ten features yielded an AUC of 0.863 in the training set and 0.805 in the validation set. Full utilisation of breast cancer-specific textural features extracted from anatomical and functional MRI images improves the performance of radiomics in predicting SLN metastasis, providing a non-invasive approach in clinical practice. aEuro cent SLN biopsy to access breast cancer metastasis has multiple complications. aEuro cent Radiomics uses features extracted from medical images to characterise intratumour heterogeneity. aEuro cent We combined T (2) -FS and DWI textural features to predict SLN metastasis non-invasively.
引用
收藏
页码:582 / 591
页数:10
相关论文
共 37 条
[1]   Defining a Radiomic Response Phenotype: A Pilot Study using targeted therapy in NSCLC [J].
Aerts, Hugo J. W. L. ;
Grossmann, Patrick ;
Tan, Yongqiang ;
Oxnard, Geoffrey G. ;
Rizvi, Naiyer ;
Schwartz, Lawrence H. ;
Zhao, Binsheng .
SCIENTIFIC REPORTS, 2016, 6
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]   Validation of the Memorial Sloan Kettering Cancer Center nomogram for predicting non-sentinel lymph node metastasis in sentinel lymph node-positive breast-cancer patients [J].
Bi, Xiang ;
Wang, Yongsheng ;
Li, Minmin ;
Chen, Peng ;
Zhou, Zhengbo ;
Liu, Yanbing ;
Zhao, Tong ;
Zhang, Zhaopeng ;
Wang, Chunjian ;
Sun, Xiao ;
Qiu, Pengfei .
ONCOTARGETS AND THERAPY, 2015, 8 :487-493
[4]   Predicting sentinel lymph node metastasis in a Chinese breast cancer population: assessment of an existing nomogram and a new predictive nomogram [J].
Chen, Jia-ying ;
Chen, Jia-jian ;
Yang, Ben-long ;
Liu, Zhe-bin ;
Huang, Xiao-yan ;
Liu, Guang-yu ;
Han, Qi-xia ;
Yang, Wen-tao ;
Shen, Zhen-zhou ;
Shao, Zhi-min ;
Wu, Jiong .
BREAST CANCER RESEARCH AND TREATMENT, 2012, 135 (03) :839-848
[5]  
Fujii T, 2015, ANTICANCER RES, V35, P3581
[6]   Prognostic Role of Diffusion-weighted MR Imaging for Resectable Gastric Cancer [J].
Giganti, Francesco ;
Orsenigo, Elena ;
Esposito, Antonio ;
Chiari, Damiano ;
Salerno, Annalaura ;
Ambrosi, Alessandro ;
Albarello, Luca ;
Mazza, Elena ;
Staudacher, Carlo ;
Del Maschio, Alessandro ;
De Cobelli, Francesco .
RADIOLOGY, 2015, 276 (02) :444-452
[7]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577
[8]   Association of Apparent Diffusion Coefficient with Disease Recurrence in Patients with Locally Advanced Cervical Cancer Treated with Radical Chemotherapy and Radiation Therapy [J].
Gladwish, Adam ;
Milosevic, Michael ;
Fyles, Anthony ;
Xie, Jason ;
Halankar, Jaydeep ;
Metser, Ur ;
Jiang, Haiyan ;
Becker, Nathan ;
Levin, Wilfred ;
Manchul, Lee ;
Foltz, Warren ;
Han, Kathy .
RADIOLOGY, 2016, 279 (01) :158-166
[9]   Haralick Textural Features on T2-Weighted MRI Are Associated With Biochemical Recurrence Following Radiotherapy for Peripheral Zone Prostate Cancer [J].
Gnep, Khemara ;
Fargeas, Aureline ;
Gutierrez-Carvajal, Ricardo E. ;
Commandeur, Frederic ;
Mathieu, Romain ;
Ospina, Juan D. ;
Rolland, Yan ;
Rohou, Tanguy ;
Vincendeau, Sebastien ;
Hatt, Mathieu ;
Acosta, Oscar ;
de Crevoisier, Renaud .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 45 (01) :103-117
[10]   Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer [J].
Huang, Yan-qi ;
Liang, Chang-hong ;
He, Lan ;
Tian, Jie ;
Liang, Cui-shan ;
Chen, Xin ;
Ma, Ze-lan ;
Liu, Zai-yi .
JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (18) :2157-+